
ETH_GAS_N 运动控制卡用户手册 V7.0

联系电话: 13113186871

联系邮箱: manyikaimen@163.com

联系电话: 13113186871

联系邮箱: manyikaimen@163.com

版权申明

博派智能科技有限公司 保留所有权力

博派智能科技有限公司(以下简称博派科技)保留在不事先通知的情况下,修改本手册中的产品和产品规格等文件的权力。

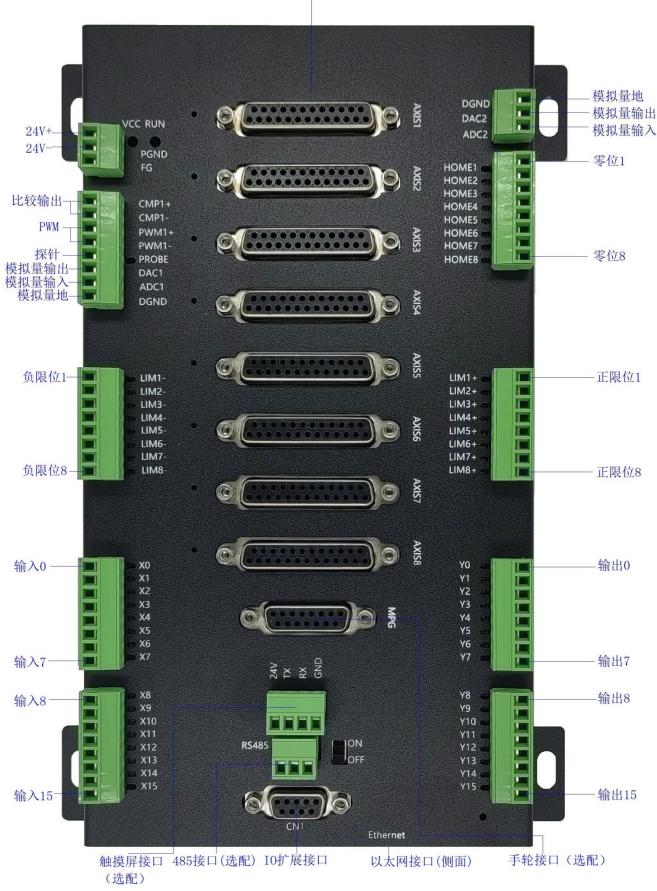
博派科技不承担由于使用本手册或本产品不当,所造成直接的、间接的、特殊的、附带的或相应产生的损失或责任。

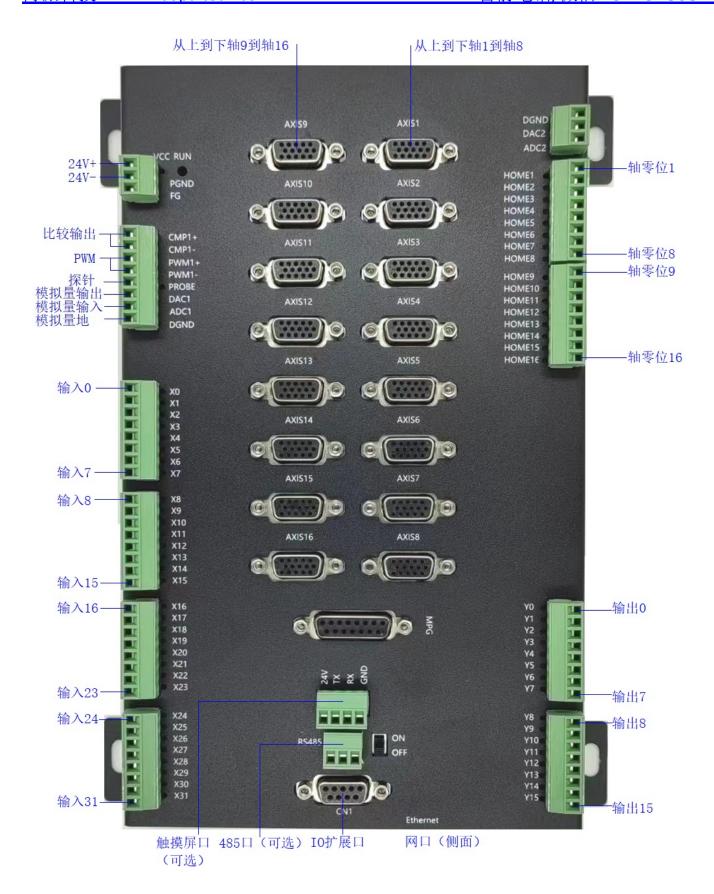
博派科技具有本产品及其软件的专利权、版权和其它知识产权。未经授权,不得直接或者间接地复制、制造、加工、使用本产品及其相关部分。

运动中的机器有危险!使用者有责任在机器中设计有效的出错处理和安全保护机制,博派科技没有义务或责任对由此造成的附带的或相应产生的损失负责。


景昌

一、硬件资源	6
二、软件资源	10
三、硬件连接	11
3.1、8 轴及以下轴信号接口	11
3.2、10 轴及以上轴信号接口	12
3.3、手轮通道接口	13
3.3、通用数字输入输出信号、原点信号和限位信号接口	14
四、API 返回值及其意义	18
五、API 使用说明	19
5.1、板卡打开关闭 API	19
5.2、板卡配置类 API	21
5.3、IO/模拟量/PWM 常规操作 API	24
5.4、点位运动 API	28
5.5、JOG 运动 API	30
5.6、运动状态检测类 API	33
5.7、安全机制 API	36
5.8、其他指令 API	41
5.9、插补运动指令 API	45
5.10、硬件捕获类 API	59
5.11、Gear/电子齿轮类 API	60
5.12、电子凸轮类 API	63
5.13、比较输出(飞拍)类 API	65
5.14、自动回零相关 API	68
5.15、PT 模式相关 API	71
5.16、手轮相关 API(支持手轮接口的型号可用)	73
5.17、串口/485 相关 API(可选项)	74
5.18、坐标系跟随相关 API(仅高端款支持)	75
5.19、双通道相关使用说明(仅高端款支持)	76
5.20、寄存器操作类 API(选配功能,PMC 系列支持,用于梯形图交互)	77
5.21、机械臂操作类 API(选配功能,PMC 系列支持)	78
5.22、DXF 图形操作类 API	80
六、 测试软件	82
七、 PC 端 IP 配置及多轴板卡并联实现方法	83
八、 IO 扩展方法	84
九、 运动控制卡安装尺寸	85
1、 四轴运动控制卡安装尺寸	85
2、 6轴、8轴运动控制卡安装尺寸	86
3、 10 轴~16 轴运动控制卡安装尺寸	86
十、附录 API 一览	87
十一、 常见问题解答	91
11.1、如何修改 IP 地址?	91
11.2、IP 地址忘记了怎么办?	92
11.3、急停信号接哪里?	92


博派科技	www.bopaitech.com		售前电话/微信:	<u> 13113186871</u>
11.4、	为什么碰到硬限位轴运动也不停止?			92
11.5、	调用 MC_Stop 函数停止加速度不够快,	怎么调整?		92
11.6、	点位运动如何判断电机到位?			93
11 7.	日志开启方法			93


一、硬件资源

- 1、板卡采用 24V 直流电源供电。
- 2、控制卡自身有 16 路通用输入,采用光耦隔离,抗干扰能力强。
- 3、控制卡自身有16路通用输出,可直接驱动继电器。
- 4、控制卡支持 IO 扩展,最大可扩展至 2048 输入/2048 输出。可满足所有应用场合。
- 5、控制卡有8路轴通道。每一路都包含脉冲、方向、正交编码器、Z相索引、使能、报警、复位
- 6、控制卡有8路零位输入、8路负硬限位输入、8路正硬限位输入。
- 7、支持以太网或者串口编程。
- 8、脉冲输出最高频率达 2MHz
- 9、控制卡支持多个并联使用,最多可扩展至2000个轴,可满足所有应用场合。
- 10、控制卡支持点位运动、速度控制、直线、圆弧、连续轨迹插补,支持速度前瞻。硬件捕获、电子齿轮/电子凸轮、位置比较输出。支持 PT 模式与刀向跟随。

从上到下分别是轴1~轴8

二、软件资源

控制卡提供了 VC++及 C#和 Delphi 以及 VB 下的动态库,用户可利用动态库提供的 API 完成板卡打开、关闭、IO 输入输出、电机点位/速度/插补/硬件捕获/电子齿轮/比较输出等运动控制功能。Labview 下也可以通过调用 C++动态库的方式使用。同时板卡支持 Linux、Android、iOS、Wince、Python、QT 等开发环境及语言。

名称	修改日期	类型	大小
测试软件-EthBoardTest_2016	2019/1/23 17:44	文件夹	
开发例程源代码 (基于VS2010)	2019/1/23 17:44	文件夹	
库文件及头文件	2019/1/23 17:44	文件夹	
🄁 8轴运动控制卡用户手册V2.0.pdf	2018/7/1 14:46	Adobe Acrobat	1,663 KB
■ 开发工具软件VS2010下载地址(百度云盘链接).txt	2018/7/24 20:55	文本文档	1 KB

三、硬件连接

3.1、8 轴及以下轴信号接口

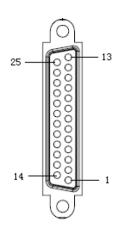
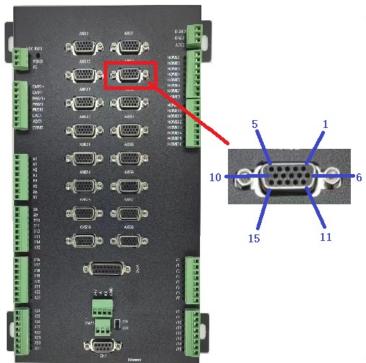
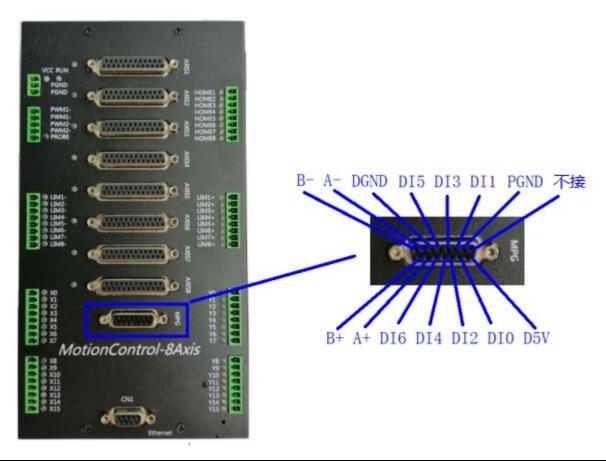



图 3-1: 轴通道接口引脚说明

管脚序号	信号	管脚说明
1	OGND	外部电源地
2	ALM	驱动报警
3	ENABLE	驱动使能
4	A-	编码器输入 A-
5	B-	编码器输入 B-
6	C-	编码器输入 C-
7	+5V	电源输出
8	NC	保留
9	DIR+	方向+(5V 差分输出,严禁外接电源)
10	GND	数字地
11	PLUSE-	脉冲输出-(5V 差分输出,严禁外接电源)
12	NC	保留
13	GND	数字地
14	OVCC	+24V 输出(该输出不能用做步进电机动力电)
15	NC	保留
16	NC	保留
17	A+	编码器输入 A+
18	B+	编码器输入 B+
19	C+	编码器输入 C+
20	GND	数字地
21	GND	数字地
22	DIR-	方向-(5V 差分输出,严禁外接电源)
23	PLUSE+	脉冲输出+(5V差分输出,严禁外接电源)
24	GND	数字地
25	NC	保留

3.2、10 轴及以上轴信号接口



序号	信号	管脚说明
1	PLUSE+	脉冲输出+(5V差分输出,严禁外接电源)
2	PLUSE-	脉冲输出-(5V差分输出,严禁外接电源)
3	DIR+	方向+(5V差分输出,严禁外接电源)
4	DIR-	方向-(5V差分输出,严禁外接电源)
5	GND	地
6	OVCC	+24V输出
7	C+	编码器输入 C+
8	C-	编码器输入 C-
9	NC	保留
10	ALM	驱动报警
11	A+	编码器输入 A+
12	A-	编码器输入 A-
13	B+	编码器输入 B+
14	B-	编码器输入 B-
15	ENABLE	驱动使能

图 3-1: 轴通道接口引脚说明

	,	SET TIME OUT
序	信号	管脚说明
号		
1	PLUSE+	脉冲输出+(5V 差分输出,严禁外接电源)
2	PLUSE-	脉冲输出-(5V 差分输出,严禁外接电源)
3	DIR+	方向+(5V 差分输出,严禁外接电源)
4	DIR-	方向-(5V 差分输出,严禁外接电源)
5	GND	地
6	OVCC	+24V 输出(该输出不能用做步进电机动力电)
7	C+	编码器输入 C+
8	C-	编码器输入 C-
9	NC	保留
10	ALM	驱动报警
11	A+	编码器输入 A+
12	A-	编码器输入 A-
13	B+	编码器输入 B+
14	B-	编码器输入 B-
15	ENABLE	驱动使能

3.3、手轮通道接口

控制卡	引脚	手轮
D5V	9	VCC 和 LED+
PGND	2	0V 和 LED-
A+	14	Α
A-	7	A-
B+	15	В
B-	8	B-
DIO	10	X
DI1	3	Υ
DI2	11	Z
DI3	4	Α
DI4	12	В
DI5	5	X1
DI6	13	X10
DGND	6	СОМ

重点说明: X100 不用接, 当 X1 和 X10 没有触发的时候, 就是 X100

3.3、通用数字输入输出信号、原点信号和限位信号接口

通用输入输出均为 NPN.

注:千万不可将 24V 直接接入输出 IO,可能导致输出端口短路,烧坏板卡!!!

VCC	外部电源 24V
PGND	外部电源地
X0	通用输入
X1	通用输入
X2	通用输入
Х3	通用输入
X4	通用输入
X5	通用输入
Х6	通用输入
Х7	通用输入
X8	通用输入
Х9	通用输入
X10	通用输入
X11	通用输入
X12	通用输入
X13	通用输入
X14	通用输入
X15	通用输入
Y0	通用输出
Y1	通用输出
Y2	通用输出
Y3	通用输出
Y4	通用输出
Y5	通用输出
Y6	通用输出
Y7	通用输出
Y8	通用输出
Y9	通用输出
Y10	通用输出
Y11	通用输出
Y12	通用输出
Y13	通用输出
Y14	通用输出
Y15	通用输出
LIM1-	1 轴负向限位
LIM2-	2 轴负向限位
LIM3-	3 轴负向限位
LIM4-	4 轴负向限位

博派科技 www.bopaitech.com

LIM5-	5 轴负向限位
LIM6-	6 轴负向限位
LIM7-	7 轴负向限位
LIM8-	8 轴负向限位
LIM1+	1 轴正向限位
LIM2+	2 轴正向限位
LIM3+	3 轴正向限位
LIM4+	4 轴正向限位
LIM5+	5 轴正向限位
LIM6+	6 轴正向限位
LIM7+	7 轴正向限位
LIM8+	8 轴正向限位
HOME1	1轴原点输入
HOME2	2 轴原点输入
HOME3	3 轴原点输入
HOME4	4 轴原点输入
HOME5	5 轴原点输入
HOME6	6 轴原点输入
HOME7	7 轴原点输入
HOME8	8 轴原点输入

注:千万不可将 24V 直接接入输出 IO,可能导致输出端口短路,烧坏板卡!!!

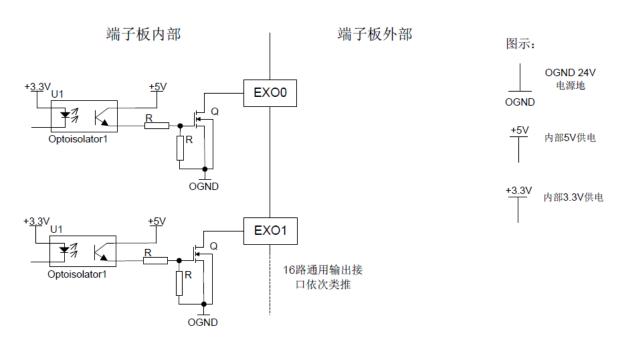
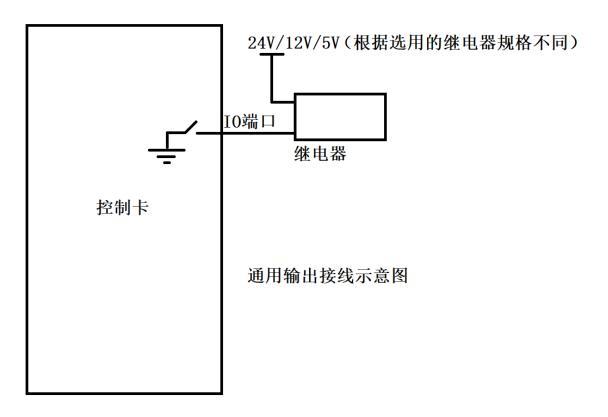



图 3-3: 端子板通用数字输出信号内部电路示意图

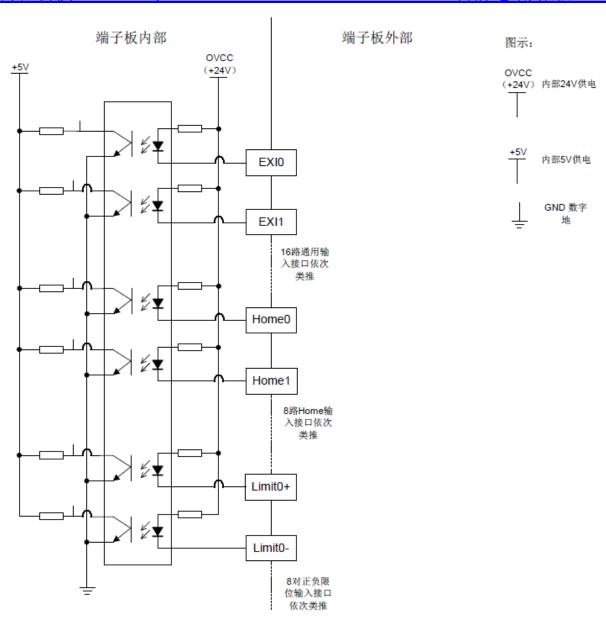
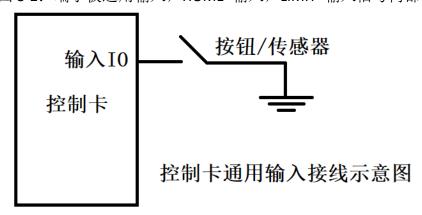



图 3-2: 端子板通用输入,HOME 输入,LIMIT 输入信号内部电路示意图

四、API 返回值及其意义

返回值	意义	处理方法
0	执行成功	
1	执行失败	检测命令执行条件是否满足
2	版本不支持该 API	如有需要,联系厂家
7	参数错误	检测参数是否合理
-1	通讯失败	接线是否牢靠,更换板卡
-6	打开控制器失败	是否输入正确串口名,是否调用 2 次 MC_Open
-7	运动控制器无响应	检测运动控制器是否连接,是否打开。更换板卡

五、API 使用说明

5.1、板卡打开关闭 API

API	说明
MC_SetCardNo	切换当前运动控制器卡号
MC_GetCardNo	读取当前运动控制器卡号
MC_Open	打开板卡
MC_OpenByIP	打开板卡
MC_Reset	复位板卡
MC_Close	关闭板卡

参数详细说明:

参数详细说明:		
<pre>int MC_SetCardNo(short</pre>	iCardNum)	
iCardNum	将被设置为当前运动控制器的卡号,取值范围:[1,255]	
<pre>int MC_GetCardNo(short</pre>	*pCardNum)	
pCardNum	读取的当前运动控制器的卡号	
<pre>int MC_Open(short iType</pre>	e=0, char* cName="COM1")	
iType	打开方式,0网口,1串口	
cName	当 iType=0(网口方式打开)时,该参数代表 PC 端 IP 地址	
	当 iType=1(串口方式打开)时,该参数代表默认串口号	
_	dNum, char* cPCEthernetIP, unsigned short nPCEthernetPort, char*	
cCardEthernetIP, unsign	ed short nCardEthernetPort)	
nCardNum	卡号,从1开始,第一个卡填1,第二个卡填2	
cPCEthernetIP	电脑 IP 地址(需要和板卡在同一个网段)	
nPCEthernetPort	电脑端口号,通常第一个卡填 60000, 第二个卡填 60001	
cCardEthernetIP	板卡 IP 地址(出厂默认 192. 168. 0. 1)	
nCardEthernetPort	板卡端口号(和电脑端口号保持一致即可)	
<pre>int MC_OpenByIP(char* or </pre>	ePCIP, char* cCardIP, unsigned long ulID, unsigned short nRetryTime)	
cPCIP	电脑 IP	
cCardIP	板卡 IP	
ulID	固定为 0	
nRetryTime	固定为 0	
<pre>int MC_Reset()</pre>		
无参数		
<pre>int MC_Close()</pre>		
	无参数	

示例代码:

int iRes = 0;

iRes += MC_SetCardNo(1);//切换到第1块板卡

iRes += MC_Open(0, "192.168.0.200");//打开板卡(通过网口, PC 端 IP 地址为 192.168.0.200)

iRes += MC_Reset();//复位板卡

iRes += MC Close();//关闭板卡

5.2、板卡配置类 API

API	说明
MC_AlarmOn	设置轴驱动报警信号有效
MC_AlarmOff	设置轴驱动报警信号无效
MC_AlarmSns	设置运动控制器轴报警信号电平逻辑
MC_LmtsOn	设置轴限位信号有效
MC_LmtsOff	设置轴限位信号无效
MC_LmtSns	设置运动控制器各轴限位触发电平
MC_EncOn	设置为"外部编码器"计数方式
MC_EncOff	设置为"脉冲计数器"计数方式
MC_EncSns	设置编码器的计数方向
MC_StepSns	设置脉冲输出通道的方向
MC_HomeSns	设置运动控制器 HOME 输入的电平逻辑

int MC_AlarmOn(shor	t nAvisNum)	
nAxisNum	控制轴号,取值范围: [1, AXIS_MAX_COUNT]	
int MC_AlarmOff(sho		
_		
nAxisNum	控制轴号,取值范围: [1,AXIS_MAX_COUNT]	
_	signed short nSense)	
nSense	按位表示各数量输入的电平逻辑,从 bit0~bit7,分别对应-8 轴的电平逻辑	
	nAxisNum, short limitType = -1)	
nAxisNum	控制轴号,取值范围: [1,AXIS_MAX_COUNT]	
1imitType	需要有效的限位类型	
	0: 需要将该轴的正限位有效	
	1: 需要将该轴的负限位有效	
	-1: 需要将该轴的正限位和负限位都有效,默认为该值	
int MC_LmtsOff(shor	t nAxisNum, short limitType=-1)	
nAxisNum	控制轴号,取值范围: [1, AXIS_MAX_COUNT]	
1imitType	需要有效的限位类型	
	0: 需要将该轴的正限位无效	
	1: 需要将该轴的负限位无	
	-1: 需要将该轴的正限位和负限位都无效,默认为该值	
int MC_LmtSns(unsig	med short nSense)	
nSense	1、此函数用于按位设置轴的限位的触发电平状态。	
	2、运动控制器默认的限位开关是常闭开关,即各轴处于正常工作状态时,其	
	限位信号输入为低电平,当限位信号为高电平时,限位触发。	
	3、如果使用的传感器是常开,则需要调用本函数,将限位的逻辑电平反一下。	
	4、参数 nSense 一共 16 位, 分别代表 8 个轴的正限位和负限位。	
	如下表所示	
	Bit0 轴 1 正限位逻辑电平(1 低电平触发, 0 高电平触发)	
	Bit1 轴 1 负限位逻辑电平(1 低电平触发, 0 高电平触发)	
	Bit2 轴 2 正限位逻辑电平(1 低电平触发,0 高电平触发)	

售前电话/微信 13113186871

	Bit3	轴 2 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit4	轴 3 正限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit5	轴 3 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit6	轴 4 正限位逻辑电平(1 低电平触发,0 高电平触发)
nSense	Bit7	轴 4 负限位逻辑电平(1 低电平触发,0 高电平触发)
(16位)	Bit8	轴5正限位逻辑电平(1低电平触发,0高电平触发)
	Bit9	轴 5 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit10	轴6正限位逻辑电平(1低电平触发,0高电平触发)
	Bit11	轴6负限位逻辑电平(1低电平触发,0高电平触发)
	Bit12	轴7正限位逻辑电平(1低电平触发,0高电平触发)
	Bit13	轴7负限位逻辑电平(1低电平触发,0高电平触发)
	Bit14	轴8正限位逻辑电平(1低电平触发,0高电平触发)
	Bit15	轴8负限位逻辑电平(1低电平触发,0高电平触发)

//例程

//将轴1的正负限位都设置为常开,低电平触发 MC_LmtSns(0X03);

//将轴 2 的正负限位都设置为常开, 低电平触发 MC_LmtSns (0X0C);

//将轴 1 和 2 的正负限位都设置为常开,低电平触发 $MC_LmtSns(OXOF)$;

//注意:这个函数是一次性设置8个轴的限位电平

int MC_EncOn(short nEncoderNum)			
nEncoderNum	编码器通道号		
<pre>int MC_EncOff(short</pre>	nEncoderNum)		
nEncoderNum	编码器通道号		
int MC_EncSns(unsig	int MC_EncSns(unsigned short nSense)		
nSense	按位标识编码器的计数方向,bit0~bit7 依次对应编码器~8, bit8 对应辅助		
	编码器: 该编码器计数方向不取反		
<pre>int MC_StepSns(unsi</pre>	int MC_StepSns(unsigned short sense)		
sense	bit0 对应脉冲输出通道 1, bit1 对应脉冲输出通道 2, 以此类推		
	对应位为0表示不反向,对应位为1表示反向		
int MC_HomeSns(unsigned short sense)			
sense	sense:按位表示各数量输入的电平逻辑,从 bit0~bit7,分别对应轴 1-8		
	0: HOME 电平不取反		
	1: HOME 电平取反		

示例代码:

int iRes = 0;

iRes += MC SetCardNo(1);//切换到第1块板卡

iRes += MC_Open(0, "192.168.0.200");//打开板卡(通过网口, PC端 IP地址为192.168.0.200)

iRes += MC_Reset();//复位板卡

博派科技 www.bopaitech.com

iRes += MC_AlarmOn(1);//设置轴 1 驱动报警信号有效

iRes += MC_AlarmOff(1);//设置轴1驱动报警信号无效

iRes += MC_Close();//关闭板卡

5.3、IO/模拟量/PWM 常规操作 API

API	说明
MC_GetDiRaw	获取 IO 输入(包含主卡 IO、限位、零位)
MC_GetDiReverseCount	读取数字量输入信号的变化次数
MC_SetDiReverseCount	设置数字量输入信号的变化次数的初值
MC_SetExtDoValue	设置 IO 输出(包含主模块和扩展模块)
MC_GetExtDiValue	获取 IO 输入(包含主模块和扩展模块)
MC_GetExtDoValue	获取 IO 输出(包含主模块和扩展模块)
MC_SetExtDoBit	设置指定 IO 模块的指定位输出(包含主模块和扩展模块)
MC_GetExtDiBit	获取指定 IO 模块的指定位输入(包含主模块和扩展模块)
MC_GetExtDoBit	获取指定 IO 模块的指定位输出(包含主模块和扩展模块)
MC_SetDac (仅限模拟量版本)	设置 DAC 输出电压
MC_GetAdc (仅限模拟量版本)	读取 ADC 输入电压
MC_SetAdcFilter(仅限模拟量版本)	设置模拟量输入滤波时间
MC_SetAdcBias (仅限模拟量版本)	设置模拟量输入通道的零漂电压补偿值
MC_GetAdcBias (仅限模拟量版本)	读取模拟量输入通道的零漂电压补偿值
MC_SetPwm (仅限模拟量版本)	设置 PWM 输出频率以及占空比
MC_SetDoBitReverse	设置数字 IO 输出指定时间的单个脉冲

多数 片细	
<pre>int MC_GetDiRaw(short nDiType, long</pre>	*pValue)
diType	指定数字 I0 类型
	MC_LIMIT_POSITIVE(该宏定义为 0) 正限位
	MC_LIMIT_NEGATIVE(该宏定义为 1) 负限位
	MC_ALARM(该宏定义为 2) 驱动报警
	MC_HOME(该宏定义为 3) 原点开关
	MC_GPI(该宏定义为 4) 通用输入
	MC_MPG(该宏定义为 7) 手轮 IO 输入
pValue	IO 输入值存放指针
<pre>int MC_GetDiReverseCount(short nDi</pre>	Type, short diIndex, unsigned long*pReserveCount, short
nCount=1)	
nDiType	指定数字 I0 类型
	MC_LIMIT_POSITIVE(该宏定义为 0) 正限位
	MC_LIMIT_NEGATIVE(该宏定义为 1) 负限位
	MC_ALARM(该宏定义为 2) 驱动报警
	MC_HOME(该宏定义为 3) 原点开关
	MC_GPI(该宏定义为 4) 通用输入
	MC_ARRIVE(该宏定义为 5) 电机到位信号
diIndex	数字量输入的索引,取值范围:
	nDiType= MC_LIMIT_POSITIVE 时: [0,7]
	nDiType= MC_LIMIT_NEGATIVE 时: [0,7]
	nDiType= MC_ALARM 时: [0,0]
	nDiType= MC_HOME 时: [0,7]
	nDiType= MC_GPI 时: [0,15]

	nDiType= MC_ARRIVE 时: [0,7]
pReserveCount	读取的数字量输入的变化次数
nCount	读取变化次数的数字量输入的个数,默认为1
<pre>int MC_SetDiReverseCount</pre>	(short nDiType, short diIndex, unsigned long ReserveCount, short
nCount)	
nDiType	指定数字 IO 类型
	MC_LIMIT_POSITIVE(该宏定义为 0) 正限位
	MC_LIMIT_NEGATIVE(该宏定义为 1) 负限位
	MC_ALARM(该宏定义为 2) 驱动报警
	MC_HOME(该宏定义为 3) 原点开关
	MC_GPI(该宏定义为 4) 通用输入
	MC_ARRIVE(该宏定义为 5) 电机到位信号
diIndex	数字量输入的索引,取值范围:
	nDiType= MC_LIMIT_POSITIVE 时: [0,7]
	nDiType= MC_LIMIT_NEGATIVE 时: [0,7]
	nDiType= MC_ALARM 时: [0,7]
	nDiType= MC_HOME 时: [0,7]
	nDiType= MC_GPI 时: [0, 15]
D. C. C.	nDiType= MC_ARRIVE 时: [0,7]
ReserveCount	设置的数字量输入的变化次数
nCount	设置变化次数的数字量输入的个数,默认为 1
nCardIndex	rt nCardIndex, unsigned long *value, short nCount=1) 起始板卡索引(0~63), 0 是主模块,扩展模块从1开始
value	IO 输出值存放指针
nCount	本次设置的模块数量(1 [~] 64)
	rt nCardIndex, unsigned long *pValue, short nCount=1)
nCardIndex	起始板卡索引(0~63),0 是主模块,扩展模块从1开始
pValue	10 输入值存放指针
nCount	本次获取的模块数量(1 ⁶⁴)
	rt nCardIndex, unsigned long *pValue, short nCount=1)
nCardIndex	起始板卡索引 $(0^{\sim}63),0$ 是主模块,扩展模块从 1 开始
pValue	IO 输出值存放指针
nCount	本次获取的模块数量(1~64)
<pre>int MC_SetExtDoBit(short</pre>	nCardIndex, short nBitIndex, unsigned short nValue)
nCardIndex	起始板卡索引。0代表主卡,1代表扩展卡1
nBitIndex	IO 位索引号. 0~31
nValue	IO 输出值.1 代表打开输出口,0 代表关闭输出口
举例说明:	
MC_SetExtDoBit(0,3,1)//打开主卡 Y3 输出	
MC_SetExtDoBit(0,3,0)//关闭主卡 Y3 输出	
	J开第一个 IO 扩展卡 Y4 输出(带 IO 扩展卡时可以用)
	关闭第一个 IO 扩展卡 Y4 输出(带 IO 扩展卡时可以用)
	nCardIndex, short nBitIndex, unsigned short *pValue)
nCardIndex	起始板卡索引 $(0^{\sim}63), 0$ 是主模块,扩展模块从 1 开始

MWW.bobattech.com	
nBitIndex	IO 位索引号(0~15)
pValue	IO 输入值存放指针
<pre>int MC_GetExtDoBit(short nCardInde</pre>	ex, short nBitIndex, unsigned short *pValue)
nCardIndex	起始板卡索引 $(0^{63}),0$ 是主模块,扩展模块从 1 开始
nBitIndex	IO 位索引号(0~15)
pValue	IO 输入值存放指针
int MC_SetDac(short nDacNum, short	<pre>value, short nCount=1)</pre>
nDacNum	DAC 起始通道号, 1~N
Value	输出电压 0 对应 0V; 10000 对应 10V
nCount	设置的通道数,默认为1,1次最多可以设置2路DAC输出
int MC_GetAdc(short nAdcNum, short	*pValue, short nCount=1, unsigned long *pClock=NULL)
nAdcNum	ADC 通道号,1 [~] N
pValue	ADC 通道电压
nCount	读取的通道数,默认为1,1次最多可以读取2个DAC轴
int MC_SetAdcFilter(short nAdcNum,	short nFilterTime)
nAdcNum	模拟量输入通道号,取值范围 1~2
nFilterTime	滤波时间,8~200,单位毫秒。需为8的整数倍
int MC_SetAdcBias(short nAdcNum, sh	nort nBias)
nAdcNum	模拟量输入通道号,取值范围 1~2
nBias	待设置的零漂补偿值,取值范围: $[0^22000]$ 对应 $0^22.000V$
int MC_GetAdcBias(short nAdcNum, sh	nort *pBias)
nAdcNum	模拟量输入通道号,取值范围 1~2
pBias	读取到的零漂补偿值,取值范围: $[0^22000]$ 对应 $0^22.000V$
int MC_SetPwm(short nPwmNum ,doub]	le dFreq,double dDuty)
nPwmNum	起始 PWM 通道,通常为 1
dFreq	PWM 频率,0~2000000
dDuty	占空比,0~100
int MC_SetDoBitReverse(short nDoTy	ype, short nDoNum, short nValue, short nReverseTime)
nDoType	指定数字 IO 类型,通常为固定为 12
nDoNum	输出 IO 的编号
	取值范围: [1,16]
nValue	nValue 设置数字 IO 输出电平。
	1表示高电平,0表示低电平
nReverseTime	nReverseTime 维持 value 所设置电平的时间,取值范围:
	[0,32767], 单位: 1ms
· · · · · · · · · · · · · · · · · · ·	

示例代码:

int iRes = 0;

iRes += MC_SetCardNo(1);//切换到第1块板卡

iRes += MC_Open(0, "192.168.0.200");//打开板卡(通过网口, PC端 IP地址为192.168.0.200)

iRes += MC_Reset();//复位板卡

iRes += MC_SetExtDoBit(0,4,1);//设置板卡1端口3IO输出

iRes += MC_SetExtDoBit(0,4,0);//关闭板卡1端口3I0输出

//Y3 发出一个 100ms 时间宽度的负脉冲。

iRes += MC_SetDoBitReverse(12, 4, 0, 100);

iRes += MC_Close();//关闭板卡

5.4、点位运动 API

API	说明
MC_PrfTrap	设置指定轴为点位模式
MC_SetTrapPrm	设置点位模式运动参数
MC_SetTrapPrmSingle	设置点位模式运动参数(可替代 MC_SetTrapPrm)
MC_GetTrapPrm	读取点位模式运动参数
MC_GetTrapPrmSingle	读取点位模式运动参数(可替代 MC_GetTrapPrm)
MC_SetPos	设置目标位置
MC_SetVel	设置目标速度
MC_Update	启动点位运动
MC_SetTrapPosAndUpdate	设置指定轴进行点位运动,可代替以上所有函数,效率高

参数详细说明:	
<pre>int MC_PrfTrap(short nA</pre>	xisNum)
iAxis	规划轴号
<pre>int MC_SetTrapPrm(short</pre>	nAxisNum,TTrapPrm *pPrm)
iAxis	规划轴号
pPrm	设置点位模式运动参数
	//点位模式参数结构体
	typedef struct TrapPrm
	{
	double acc;//加速度
	double dec;//减速度
	double velStart;//起始速度
	short smoothTime;//平滑时间
	}TTrapPrm;
	Labview下可用 MC_SetTrapPrmSingle 函数替代本函数
int MC_SetTrapPrmSingle	e(short nAxisNum, double dAcc, double dDec, double dVelStart, short
dSmoothTime)	
nAxisNum	规划轴号
dAcc	加速度
dDec	减速度
dVelStart	启动速度
dSmoothTime	平滑时间
<pre>int MC_GetTrapPrm(short</pre>	nAxisNum,TTrapPrm *pPrm)
iAxis	规划轴号
pPrm	读取点位模式运动参数
	/ / 上
	//点位模式参数结构体
	typedef struct TrapPrm
	double acc;//加速度

double dec://减速度 double velStart://起始速度 short smoothTime;//平滑时间 }TTrapPrm: Labview 下可用 MC GetTrapPrmSingle 函数替代本函数 int MC GetTrapPrmSingle(short nAxisNum, double* dAcc, double* dDec, double* dVelStart, short* dSmoothTime) 规划轴号 nAxisNum dAcc 加速度存放指针 dDec 减速度存放指针 启动速度存放指针 dVe1Start 平滑时间存放指针 dSmoothTime int MC SetPos(short nAxisNum, long pos) iAxis 规划轴号 设置目标位置,单位是脉冲 pos int MC SetVel(short nAxisNum, double vel) 规划轴号 iAxis ve1 设置目标速度,单位是"脉冲/毫秒" int MC Update(long mask) 按位指示需要启动点位运动的轴号 mask bit0 表示轴, bit1 表示 2 轴, 举例说明: MC Update(1)//启动轴 1 (Bit0 为 1) MC Update(2)//启动轴 2 (Bit1 为 1) MC Update(7)//启动轴1、2、3(Bit0、1、2为1) MC_Update(8)//启动轴 4 (Bit3 为 1) int MC_SetTrapPosAndUpdate(short nAxisNum, long long 11Pos, double dVel, double dAcc, double dDec, double dVelStart, short nSmoothTime, short nBlock); nAxisNum 轴号,从1开始 11Pos 目标位置,单位脉冲 dVe1 速度,单位脉冲/毫米,可以为小数 加速度,单位脉冲/毫秒/毫秒,可以为小数 dAcc dDec 减速度,单位脉冲/毫秒/毫秒,可以为小数 dVe1Start 固定为0 固定为0 nSmoothTime固定为0 nBlock

示例代码:

int iRes = 0;

iRes += MC SetCardNo(1);//切换到第1块板卡

iRes += MC Open (0, "192. 168. 0. 200");//打开板卡 (通过网口, PC 端 IP 地址为 192. 168. 0. 200)

iRes += MC Reset();//复位板卡

iRes += MC_AxisOn(1);//设置轴 1 使能

iRes += MC PrfTrap(1);//设置板卡轴 1 为点位模式

```
TTrapPrm TrapPrm;
TrapPrm.acc = 0.5;//设置点位运动加速度为 0.5 脉冲/毫秒^2
TrapPrm.dec = 0.5;//设置点位运动减速度为 0.5 脉冲/毫秒^2
TrapPrm.velStart = 0;//设置点位运动起始速度为 0 脉冲/毫秒
TrapPrm.smoothTime = 0;//设置点位运动平滑时间为 0

iRes += MC_SetTrapPrm(m_iAxisNum,&TrapPrm);
iRes += MC_SetVel(1,10);//设置轴 1 点位运动速度为 10 脉冲/毫秒
iRes += MC_SetPos(1,10000);//设置轴 1 目标位置为 10000
iRes += MC_Update(0XFF);//启动点位运动
```

5.5、JOG 运动 API

API	说明
MC_PrfJog	设置指定轴为 JOG 模式(速度模式)
MC_SetJogPrm	设置 JOG 模式运动参数
MC_SetJogPrmSingle	设置 JOG 模式运动参数(可替代 MC_Set JogPrm)
MC_GetJogPrm	读取 JOG 模式运动参数
MC_GetJogPrmSingle	读取 JOG 模式运动参数(可替代 MC_Get JogPrm)
MC_SetVe1	设置目标速度
MC_Update	启动 JOG 运动

轴号,从1开始	
ogPrm *pPrm)	
轴号,从1开始	
设置 Jog 模式运动参数	
//JOG 模式参数结构体	
typedef struct JogPrm	
{	
double dAcc;//加速度	
double dDec;//减速度	
double dSmooth;//平滑时间	
}TJogPrm;	
Labview下可用 MC_SetJogPrmSingle 函数替代本函数	
int MC_SetJogPrmSingle(short nAxisNum, double dAcc, double dDec, double dSmooth)	
规划轴号	
加速度	
减速度	

博派科技 www.bopaitech.com

```
平滑时间
dSmooth
int MC GetJogPrm(short nAxisNum, TJogPrm *pPrm)
                               轴号,从1开始
iAxis
                               获取 Jog 模式运动参数
pPrm
                               //JOG 模式参数结构体
                               typedef struct JogPrm
                                  double dAcc;//加速度
                                  double dDec;//减速度
                                  double dSmooth://平滑时间
                               }TJogPrm;
                               Labview 下可用 MC Get JogPrmSingle 函数替代本函数
int MC_GetJogPrmSingle(short nAxisNum, double* dAcc, double* dDec, double* dSmooth)
                               规划轴号
nAxisNum
dAcc
                               加速度存放指针
dDec
                               减速度存放指针
dSmooth
                               平滑时间
int MC_SetVel(short nAxisNum, double vel)
iAxis
                               轴号,从1开始
                               设置目标速度,单位是"脉冲/毫秒"
ve1
int MC Update(long mask)
                               按位指示需要启动JOG运动的轴号
mask
                               bit0 表示轴, bit1 表示 2 轴, .....
```

```
示例代码:
int iRes = 0;

iRes += MC_SetCardNo(1);//切换到第 1 块板卡
iRes += MC_Open(0, "192.168.0.200");//打开板卡 (通过网口, PC 端 IP 地址为 192.168.0.200)
iRes += MC_Reset();//复位板卡

iRes += MC_PrfJog(1);//设置轴 1 为 Jog 模式
iRes += MC_AxisOn(1);//设置轴 1 使能

TJogPrm JogPrm;
JogPrm.dSmooth = 0;
JogPrm.dAcc = 0.5;//设置 JOG 运动加速度为 0.5 脉冲/毫秒^2
JogPrm.dDec = 0.5;//设置 JOG 运动减速度为 0.5 脉冲/毫秒^2
```

//注意:如果轴当前模式不是 Jog 模式,设置 JOG 运动参数会失败,会返回 1

iRes = MC SetVel(1,-1*fabs(50));//设置 JOG 运动速度为 50 脉冲/毫秒

iRes = MC SetJogPrm(1, & JogPrm);//设置 JOG 运动参数

iRes += MC_Update(OXFF);//启动 JOG 运动

5.6、运动状态检测类 API

API	说明
MC_AxisOn	打开驱动器使能
MC_AxisOff	关闭驱动器使能
MC_Stop	停止一个或多个轴的规划运动,停止坐标系运动
MC_GetSts	读取轴状态
MC_ClrSts	清除驱动器报警标志、跟随误差越限标志、限位触发标志
MC_GetPrfPos	读取规划位置
MC_GetPrfVel	读取规划速度
MC_GetAxisEncPos	读取编码器位值
MC_GetAllSysStatus	获取所有板卡相关状态

int MC_AxisOn(short nAxisNum)nAxisNum轴编号,取值范围: [1,AXIS_MAX_COUNT]int MC_AxisOff(short nAxisNum)nAxisNum轴编号,取值范围: [1,AXIS_MAX_COUNT]int MC_Stop(long 1Mask, long 1Option)1Mask按位指示需要停止运动的轴号或者坐标系号bit0表示轴1,bit1表示轴2, ",bit7表示轴8bit8表示坐标系1,bit9表示坐标系2当bit位为1时表示停止对应的轴或者坐标系			
int MC_AxisOff(short nAxisNum)nAxisNum轴编号,取值范围: [1,AXIS_MAX_COUNT]int MC_Stop(long 1Mask, long 1Option)1Mask按位指示需要停止运动的轴号或者坐标系号 bit0表示轴1,bit1表示轴2, ",bit7表示轴8 bit8表示坐标系1,bit9表示坐标系2			
nAxisNum轴编号,取值范围: [1,AXIS_MAX_COUNT]int MC_Stop(long lMask, long lOption)接位指示需要停止运动的轴号或者坐标系号 bit0表示轴1,bit1表示轴2, ",bit7表示轴8 bit8表示坐标系1,bit9表示坐标系2			
int MC_Stop(long 1Mask, long 10ption)1Mask按位指示需要停止运动的轴号或者坐标系号 bit0表示轴1, bit1表示轴2, ", bit7表示轴8 bit8表示坐标系1, bit9表示坐标系2			
lMask 按位指示需要停止运动的轴号或者坐标系号 bit0表示轴1, bit1表示轴2, ", bit7表示轴8 bit8表示坐标系1, bit9表示坐标系2			
bit0表示轴1, bit1表示轴2, ", bit7表示轴8 bit8表示坐标系1, bit9表示坐标系2			
bit8表示坐标系1, bit9表示坐标系2			
当 bit 位为 1 时表示停止对应的轴或者坐标系			
10ption 按位指示停止方式			
bit0表示轴1, bit1表示轴2, ", bit7表示轴8			
bit8表示坐标系1,bit9表示坐标系2	bit8表示坐标系1,bit9表示坐标系2		
当bit位为0时表示平滑停止对应的轴或坐标系			
当bit位为1时表示紧急停止对应的轴或坐标系			
<pre>int MC_GetSts(short nAxisNum, long *pSts, short nCount=1, unsigned long *pClock=NU</pre>	LL)		
nAxisNum 起始轴号			
pSts 32位轴状态字,详细定义参见光盘头文件GAS_N. h的轴状态位定义部	邓分		
//轴状态位定义			
#define AXIS_STATUS_ESTOP (0x00000001) //急停			
#define AXIS_STATUS_SV_ALARM (0x00000002) //驱动器报警标志			
#define AXIS_STATUS_POS_SOFT_LIMIT (0x00000004) //正软限位触发标志			
#define AXIS_STATUS_NEG_SOFT_LIMIT (0x00000008) //负软位触发标志			
#define AXIS_STATUS_FOLLOW_ERR (0x00000010) //规划位置和实际位置的误差	过大时置1		
#define AXIS_STATUS_POS_HARD_LIMIT (0x00000020) //正硬限位触发标志			
#define AXIS_STATUS_NEG_HARD_LIMIT (0x00000040) //负硬限位触发标志			
#define AXIS_STATUS_IO_SMS_STOP (0x00000080) //保留			
#define AXIS_STATUS_IO_EMG_STOP (0x00000100) //保留			
#define AXIS_STATUS_ENABLE (0x00000200) //电机使能标志			
#define AXIS_STATUS_RUNNING (0x00000400) //规划运动标志,规划器运动	村置 1		
#define AXIS_STATUS_ARRIVE (0x00000800) //电机到位			
#define AXIS_STATUS_HOME_RUNNING (0x00001000) //正在回零			

<u>博派科技 www.bopaitech.com 售削电话/微信 131131868/1</u>				
	#define AXIS_STATUS_HOME_SUCESS (0x00002000) //回零成功			
	#define AXIS_STATUS_HOME_SWITCH (0x00004000) //零位信号			
	#define AXIS_STATUS_INDEX (0x00008000) //z 索引信号			
	#define AXIS_STATUS_GEAR_START (0x00010000) //电子齿轮开始啮合			
	#define AXIS_STATUS_GEAR_FINISH (0x00020000) //电子齿轮完成啮合			
nCount	读取的轴数,默认为 1次最多可以读取多个轴的状态			
pClock	读取控制器时钟,默认为: NULL, 即不用读取控制器时钟			
<pre>int MC_ClrSts(short</pre>	nAxisNum, short nCount)			
nAxisNum	起始轴号,取值范围: [1,AXIS_MAX_COUNT]			
nCount	清除的轴数,默认为,1次最多可以清除个轴的异常状态			
<pre>int MC_GetPrfPos(short</pre>	rt nAxisNum, double *pValue, short nCount=1, unsigned long *pClock=NULL)			
nAxisNum	起始轴号,取值范围: [1,AXIS_MAX_COUNT]			
pValue	规划位置			
nCount	读取的规划轴数,默认为,1次最多可以读取多个轴的运动模式			
pClock	读取控制器时钟,默认为: NULL, 即不用读取控制器时钟			
<pre>int MC_GetPrfVel(short</pre>	rt nAxisNum, double *pValue, short nCount=1, unsigned long *pClock=NULL)			
nAxisNum	起始轴号,取值范围: [1,AXIS_MAX_COUNT]			
pValue	轴的规划速度,单位脉冲/毫秒			
nCount	读取的轴数,默认为,1次最多可以读取多个轴的编码器位置			
pClock	读取控制器时钟,默认为: NULL, 即不用读取控制器时钟			
<pre>int MC_GetAxisEncPos</pre>	(short nAxisNum, double *pValue, short nCount=1, unsignedlong			
*pClock=NULL);				
nAxisNum	起始轴号,取值范围: [1,AXIS_MAX_COUNT]			
pValue	轴的编码器位置			
nCount	读取的轴数,默认为,1次最多可以读取多个轴的编码器位置			
pClock	读取控制器时钟,默认为: NULL, 即不用读取控制器时钟			
比如读取轴1 [~] 轴4的编码器位置,代码如下:				

double dEncPos[4];

MC_GetAxisEncPos(1, &dEncPos[0], 4, NULL);

第一个参数1代表从轴1开始

第二个参数代表读取到的值要存放的变量地址,读取成功后,dEncPos[0]就是轴1编码器位置..类推

第三个参数4代表一次读取4个轴的

第四个参数无意义,固定为NULL

int MC GetAllSysStatusSX(TAllSysStatusDataSX *pAllSysStatusData)

pAllSysStatusData	//16轴以内系统状态结构体
	typedef struct _AllSysStatusDataSX
	{
	long lAxisEncPos[16];//轴编码器位置
	long lAxisPrfPos[16];//轴规划位置
	unsigned long lAxisStatus[16];//轴状态
	short nADCValue[2];//ADC值
	long 1UserSegNum[2];//两个坐标系的用户段号
	short 1RemainderSegNum[2];//两个坐标系的剩余段号

```
short nCrdRunStatus[2];//两个坐标系的坐标系状态
short 1CrdSpace[2];//两个坐标系的剩余空间
float dCrdVe1[2];//两个坐标系的速度
long 1CrdPos[2][5];//两个坐标系的坐标
short 1LimitPosRaw;//正硬限位
short 1LimitNegRaw;//负硬限位
short 1AlarmRaw;//报警输入
short 1HomeRaw;//零位输入
long 1MPGEncPos;//季轮编码器
int 1MPG;//手轮IO信号
long 1GpiRaw[8];//通用IO输入(除主卡外,最大支持7个扩展模块)
long 1GpoRaw[8];//通用IO输出(除主卡外,最大支持7个扩展模块)
}TAllSysStatusDataSX;
```

```
示例代码:
int iRes = 0;
long lSts = 0;
double dPrfPos = 0;
Double dEncPos = 0;
iRes += MC_SetCardNo(1);//切换到第 1 块板卡
iRes += MC_Open(0, "192. 168. 0. 200");//打开板卡 (通过网口, PC 端 IP 地址为 192. 168. 0. 200)
iRes += MC_Reset();//复位板卡

iRes += MC_AxisOn(1);//设置轴 1 使能
iRes += MC_AxisOff(1);//设置轴 1 断开使能

iRes += MC_Stop((0X0001 << (5-1)),0);//设置轴 5 停止运动
iRes += MC_GetSts(1,&lSts);//获取轴 1 状态
iRes += MC_ClrSts(1);//清除轴 1 运动状态
iRes += MC_GetPrfPos(1,&dPrfPos,1,NULL)
iRes += MC_GetAxisEncPos(1,&dEncPos,1,NULL)
```

5.7、安全机制 API

重点说明:默认各轴软限位不使能。如果要启用硬限位,还要调用 MC_LmtsOn 函数。

API	说明
MC_SetSoftLimit	设置软限位
MC_GetSoftLimit	获取软限位
MC_LmtsOn	设置轴限位信号有效
MC_LmtsOff	设置轴限位信号无效
MC_LmtSns	设置运动控制器各轴限位触发电平
MC_SetLmtSnsSingle	设置运动控制器指定轴限位触发电平
MC_EStopConfig	配置急停触发时,模拟量值,IO 状态等
MC_EStopSetIO	设置系统紧急停止 I0
MC_EStopOnOff	开启/关闭紧急停止功能
MC_EStopGetSts	获取紧急停止触发状态
MC_EStopC1rSts	清除紧急停止触发状态
MC_SetHardLimP(10 轴以上用)	设置正硬限位映射 IO
MC_SetHardLimN(10 轴以上用)	设置负硬限位映射 IO
MC_CrdHlimEnable	坐标系硬限位使能开启/关闭

多数 中细		
<pre>int MC_SetSoftL</pre>	.imit(<mark>short</mark> nAxisNum	m, long 1Positive , long 1Negative)
axis		轴编号
positive		正限位,单位脉冲
negative		负限位,单位脉冲
<pre>int MC_GetSoftLimit(short nAxisNum, long *pPositive , long *pNegative)</pre>		
axis		轴编号
pPositive		正限位存放指针,单位脉冲
pNegative		负限位存放指针,单位脉冲
int MC_LmtsOn(s	hort nAxisNum, short	t limitType = -1)
nAxisNum	控制轴号,取值范围	: [1, AXIS_MAX_COUNT]
limitType	需要有效的限位类型	1
	MC_LIMIT_POSITIVE	(该宏定义为0): 需要将该轴的正限位有效
	MC_LIMIT_NEGATIVE	(该宏定义为1): 需要将该轴的负限位有效
	-1: 需要将该轴的正	E限位和负限位都有效,默认为该值
<pre>int MC_LmtsOff(</pre>	short nAxisNum, shor	rt limitType=-1)
nAxisNum	控制轴号,取值范围: [1,AXIS_MAX_COUNT]	
limitType	需要有效的限位类型	
	MC_LIMIT_POSITIVE(该宏定义为0): 需要将该轴的正限位无效	
	MC_LIMIT_NEGATIVE(该宏定义为1): 需要将该轴的负限位无效	
	-1: 需要将该轴的正	E限位和负限位都无效,默认为该值
int MC_LmtSns(unsigned short nSense)		
nSense	1、此函数用于按位于	设置轴的限位的触发电平状态。
	2、运动控制器默认	的限位开关是常闭开关,即各轴处于正常工作状态时,其限位信

号输入为低电平, 当限位信号为高电平时, 限位触发。

- 3、如果使用的传感器是常开,则需要调用本函数,将限位的逻辑电平反一下。
- 4、参数 nSense 一共 16 位,分别代表 8 个轴的正限位和负限位。

如下表所示

241 1 04//1/4		
	Bit0	轴1正限位逻辑电平(1低电平触发,0高电平触发)
	Bit1	轴 1 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit2	轴2正限位逻辑电平(1低电平触发,0高电平触发)
	Bit3	轴 2 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit4	轴 3 正限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit5	轴 3 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit6	轴 4 正限位逻辑电平(1 低电平触发,0 高电平触发)
nSense	Bit7	轴 4 负限位逻辑电平(1 低电平触发,0 高电平触发)
(16位)	Bit8	轴 5 正限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit9	轴 5 负限位逻辑电平(1 低电平触发,0 高电平触发)
	Bit10	轴6正限位逻辑电平(1低电平触发,0高电平触发)
	Bit11	轴6负限位逻辑电平(1低电平触发,0高电平触发)
	Bit12	轴7正限位逻辑电平(1低电平触发,0高电平触发)
	Bit13	轴7负限位逻辑电平(1低电平触发,0高电平触发)
	Bit14	轴8正限位逻辑电平(1低电平触发,0高电平触发)
	Bit15	轴8负限位逻辑电平(1低电平触发,0高电平触发)

//例程

//将轴1的正负限位都设置为常开,低电平触发 MC LmtSns(0X03);

//将轴 2 的正负限位都设置为常开,低电平触发 MC_LmtSns (0X0C);

//将轴 1 和 2 的正负限位都设置为常开,低电平触发 $MC_LmtSns(OXOF)$;

//注意:这个函数是一次性设置8个轴的限位电平

//如果控制卡是8轴~16轴,请使用函数MC_LmtSnsEX,用法与本函数一样

<pre>int MC_SetLmtSnsSingle(short nAxisNum, short nPosSns, short nNegSns)</pre>		
nAxisNum	轴号	
nPosSns	电平逻辑,0不反转,常开,1反转,常闭	
nNegSns	电平逻辑,0不反转,常开,1反转,常闭	
<pre>int MC_EStopCor</pre>	nfig(unsigned long ulEnableMask, unsigned long ulEnableValue, short	
nAdcMask, short	nAdcValue, unsigned long ulIOMask, unsigned long ulIOValue)	
ulEnableMask	急停触发时要设置使能状态的轴掩码,Bit0代表轴1,Bit1代表轴2,Bit2代表轴	
	3	
ulEnableValue	急停触发时,要设置的使能状态,Bit0 代表轴 1,Bit1 代表轴 2,Bit2 代表轴	
	3	
nAdcMask	急停触发时,要设置的模拟量通道掩码,Bit0代表通道1,Bit1代表通道2	
nAdcValue	急停触发时,要设置的模拟量值	

ulIOMask	急停触发时要设置使能状态的 IO 掩码, Bit0 代表 YO, Bit1 代表 Y1, Bit2 代表		
	Y2		
ulI0Value	急停触发时要设置 IO 值, BitO 代表 YO, Bit1 代表 Y1, Bit2 代表 Y2		
<pre>int MC_EStopSet?</pre>	IO(short nCardIndex, short nIOIndex, short nEStopSns, unsigned long 1FilterTime)		
nCardIndex	卡号, 主卡为0, 扩展I0卡依次为1、2、3、4		
nIOIndex	I0索引,0~15		
nEStopSns	电平逻辑,0不反转,1反转		
1FilterTime	滤波时间,单位ms		
<pre>int MC_EStopOnO</pre>	ff(short nEStopOnOff)		
nEStopOnOff	0 紧急停止功能关闭, 1 紧急停止功能打开		
<pre>int MC_EStopGet</pre>	Sts(short *nStatus)		
nStatus	0 紧急停止未触发, 1 紧急停止触发		
<pre>int MC_EStopC1r</pre>	<pre>int MC_EStopC1rSts()</pre>		
int MC_SetHardLimP(short nAxisNum, short nType , short nCardIndex, short nIOIndex)			
nAxisNum	轴编号		
nType	-1:硬限位无效, 0: 用零位信号当限位, 1: 用通用输入 IO 当限位		
nCardIndex	卡号, 主卡为 0, 扩展 I0 卡依次为 1、2、3、4		

例如将 Home0 作为轴 1 正限位:

IO 索引,0~31

MC SetHardLimP(1, 0, 0, 0)

nI0Index

//第一个1代表轴号,第二个0代表用零位当限位,第三个0代表主卡,第四个0代表 IO索引

例如将 Home8 作为轴 1 正限位:

MC SetHardLimP(1, 0, 0, 7)

//第一个1代表轴号,第二个0代表用零位当限位,第三个0代表主卡,第四个7代表 IO索引

例如将 X0 作为轴 3 正限位:

MC SetHardLimP(3, 1, 0, 0)

//第一个3代表轴号,第二个1代表用通用输入当限位,第三个0代表主卡,第四个0代表 IO 索引

例如将 X8 作为轴 3 正限位:

MC SetHardLimP(3, 1, 0, 8)

//第一个3代表轴号,第二个1代表用通用输入当限位,第三个0代表主卡,第四个8代表 IO索引

int MC_SetHardLimN(short nAxisNum, short nType , short nCardIndex, short nIOIndex)		
nAxisNum	轴编号	
nType	-1:硬限位无效, 0: 用零位信号当限位, 1: 用通用输入 IO 当限位	
nCardIndex	卡号, 主卡为 0, 扩展 I0 卡依次为 1、2、3、4	
nIOIndex	IO 索引,0~31	

例如将 Home0 作为轴 1 负限位:

MC SetHardLimN(1, 0, 0, 0)

//第一个1代表轴号,第二个0代表用零位当限位,第三个0代表主卡,第四个0代表 IO索引

例如将 Home8 作为轴 1 负限位:

MC SetHardLimN(1, 0, 0, 7)

//第一个1代表轴号,第二个0代表用零位当限位,第三个0代表主卡,第四个7代表 IO索引

例如将 X0 作为轴 3 负限位:

MC SetHardLimN(3, 1, 0, 0)

//第一个 3 代表轴号, 第二个 1 代表用通用输入当限位, 第三个 0 代表主卡, 第四个 0 代表 IO 索引

例如将 X8 作为轴 3 负限位:

MC_SetHardLimN(3, 1, 0, 8)

//第一个3代表轴号,第二个1代表用通用输入当限位,第三个0代表主卡,第四个8代表 IO索引

int MC_CrdHlimEnable(short nCrdNum, short nEnableFlag)		
nCrdNum	坐标系号	
nEnableFlag	0 坐标系硬限位关闭	
	1 坐标系硬限位打开	

```
示例代码:
int iRes = 0;
long 1Sts = 0;
//long 1SoftLimPos= 0X7FFFFFFF;
long 1SoftLimPos= 2147483647;
//long 1SoftLimNeg=0X80000000;
long lSoftLimNeg=-2147483648;
iRes += MC SetCardNo(1)://切换到第1块板卡
iRes += MC_Open(0, "192.168.0.200");//打开板卡(通过网口, PC端 IP地址为192.168.0.200)
iRes += MC Reset();//复位板卡
//iRes = MC SetSoftLimit(1, 1SoftLimPos, 1SoftLimNeg);
//注意, 板卡默认上电是没有软限位的
//设置轴 1 正软限位为 10000(单位脉冲), 负软限位为 10000(单位脉冲)
iRes = MC SetSoftLimit(1, 10000, -10000);
//这样就相当于关闭软限位
iRes = MC_SetSoftLimit(1, 2147483647, -2147483648);
iRes = MC LmtsOn(1,-1); //将第一个轴的正硬限位和负硬限位都有效
iRes = MC EStopSetIO(0,0,0,10);//设置主卡通用输入 XO 为紧急停止 IO,滤波时间 10ms
iRes = MC EStopOnOff(1)://紧急停止功能打开
iRes = MC EStopGetSts(&nStatus);//获取紧急停止触发状态
iRes = MC EStopC1rSts();//清除紧急停止状态
```

5.8、其他指令 API

API	说明
MC_ZeroPos	清零轴的规划和编码器位置
MC_GetID	获取板卡唯一标识 ID
MC_SetAxisBand	设置轴到位误差带
MC_SetBacklash	设置反向间隙补偿的相关参数
MC_GetBacklash	读取反向间隙补偿的相关参数
MC_SetStopDec	设置平滑停止减速度和急停减速度
MC_WriteInterFlash	写板卡内部 Flash
MC_ReadInterFlash	读板卡内部 Flash
MC_DownPitchErrorTable	下载螺距误差补偿表
MC_ReadPitchErrorTable	读取螺距误差补偿表
MC_AxisErrPitchOn	打开指定螺距误差补偿
MC_AxisErrPitchOff	关闭指定轴螺距误差补偿
MC_SetPrfPos	修改规划(脉冲)位置,修改时,轴不能处于运动状态
MC_SetEncPos	修改编码器位置,修改时,轴不能处于运动状态

参数详细说明 :	
int MC_ZeroPos(sho	ort nAxisNum, short nCount=1)
nAxisNum	需要位置清零的起始轴号,取值范围: [1,AXIS_MAX_COUNT]
nCount	需要位置清零的轴数
<pre>int MC_SetAxisBand</pre>	d(short nAxisNum, long 1Band, long 1Time)
nAxisNum	轴号
band	误差带大小,单位:脉冲(默认值:3)
time	误差带保持时间,单位: ms (默认值: 3)
<pre>int MC_SetBacklash</pre>	(short nAxisNum, long 1CompValue, double dCompChangeValue, long 1CompDir)
nAxisNum	需要进行反向间隙补偿的轴的编号,取值范围: [1,8]
1CompValue	反向间隙补偿值,当为0时表示没有使能反向间隙补偿功能,取值只能为正,
	范围: [0, 1073741824],单位: 脉冲
dCompChangeValue	反向间隙补偿的变化量,取值只能为正,范围: [0, 1073741824],单位:脉
	冲/毫秒
	当该参数的值为 0 或者大于等于 1CompValue 时,则反向间隙的补偿量将瞬间
	叠加在规划位置上,没有渐变的过程
1CompDir	反向间隙补偿方向
	0: 只补偿负方向,当电机向负方向运动时,将施加补偿量,电机向正方向运
	动时,不施加补偿量
	1: 只补偿正方向,当电机向正方向运动时,将施加补偿量,电机向负方向运
	一 动时,不施加补偿量
<pre>int MC_GetBacklash(short nAxisNum, long *pCompValue, double *pCompChangeValue, long</pre>	
*pCompDir)	
nAxisNum	nAxisNum 查询的轴号,取值范围: [1, AXIS_MAX_COUNT]
pCompValue	pCompValue 读取的反向间隙补偿值
pCompChangeValue	pCompChangeValue 读取的反向间隙补偿值的变化量

一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
pCompDir	pCompDir 读取的反向间隙补偿的补偿方向
	(short nAxisNum, double decSmoothStop, double decAbruptStop)
nAxisNum	轴编号
DecSmoothStop	平滑停止减速度,单位: 脉冲/毫秒/毫秒,建议范围 0.1^2 , 默认 0.5
DecAbruptStop	急停减速度,单位:脉冲/毫秒/毫秒,建议范围 1~20,默认 1
int MC_WriteInter	Flash(unsigned char* pData, short nLength)
pData	数据指针
nLength	数据长度,不能大于 500
int MC_ReadInterF	lash(unsigned char*pData, short nLength)
pData	数据指针
nLength	数据长度,不能大于 500
int MC_DownPitchE	rrorTable(short nTableNum, short nPointNum, long 1StartPos, long
1EndPos, short *pE	rrValue1, short *pErrValue2)
nTableNum	表号,1 [~] 16
nPointNum	补偿点个数,2 [~] 1024
1StartPos	起始位置,单位脉冲
1EndPos	结束位置,单位脉冲
pErrValue1	StartPos-EndPos 补偿表,单位脉冲
pErrValue2	EndPos-StartPos 补偿表,单位脉冲
int MC_ReadPitchE	rrorTable(short nTableNum, short* pPointNum, long* pStartPos, long*
pEndPos, short *pE	rrValue1, short *pErrValue2)
nTableNum	表号,1 [~] 16
pPointNum	补偿点个数,2 [~] 1024
pStartPos	起始位置,单位脉冲
pEndPos	结束位置,单位脉冲
pErrValue1	StartPos-EndPos 补偿表,单位脉冲
pErrValue2	EndPos-StartPos 补偿表,单位脉冲
int MC_AxisErrPite	chOn(short nAxisNum)
nAxisNum	轴号
int MC_AxisErrPite	chOff(short nAxisNum)
nAxisNum	轴号
int MC_SetPrfPos(short nAxisNum, long 1PrfPos)
nAxisNum	轴编号
1PrfPos	规划(脉冲)位置
int MC_SetEncPos(short nEncodeNum, long lEncPos)
nAxisNum	轴编号
1EncPos	编码器位置

```
示例代码:
int iRes = 0;
long 1Sts = 0;
```

```
unsigned long ulID = 0;
long 1SoftLimPos= 0X7FFFFFFF;
long 1SoftLimNeg=0X80000000
iRes += MC SetCardNo(1);//切换到第1块板卡
iRes += MC_Open(0, "192.168.0.200");//打开板卡(通过网口, PC端 IP地址为192.168.0.200)
iRes += MC Reset();//复位板卡
iRes += MC ZeroPos(1,8);//清零所有8个轴的位置
iRes += MC SetAxisBand(1, 3, 5)//设置轴 1 到位误差带为 3 个脉冲, 保持时间为 5ms
//设置轴1反向间隙为3个脉冲,补偿速率2脉冲/ms,反向运动时补偿
iRes = MC SetBacklash(1, 3, 2, 0);
iRes = MC GetID(&u1ID);
short ErrValue1[2000];
short ErrValue2[2000];
//任意初始化了一个螺距误差表(这里仅仅用于测试,实际应由激光干涉仪生成)
for (int i=0; i <= 1000; i++)
  ErrValue1[i] = i;
  ErrValue2[i] = i;
}
//下载轴 2 的螺距误差表, 点数量 1001, 起始位置 10000, 终止位置 20000
iRes = MC DownPitchErrorTable(2, 1001, 10000, 20000, &ErrValue1[0], &ErrValue2[0]);
//启用轴2螺距误差表
iRes = MC_AxisErrPitchOn(2);
```

5.9、插补运动指令 API

API	说明
MC_SetCrdPrm	设置坐标系参数,确立坐标系映射,建立坐标系
MC_SetCrdPrmSingleEX	用于代替 MC_SetCrdPrm 函数,方便不擅长结构体的客户使用。
MC_GetCrdPrm	查询坐标系参数
MC_InitLookAhead	配置指定坐标系指定 FifoIndex 前瞻缓冲区的拐弯速率, 最大加速度, 缓
	冲区深度,缓冲区指针等参数
MC_InitLookAheadSingle	用于替代 MC_InitLookAhead 函数,方便不擅长结构体的客户使用。
MC_InitLookAheadSingleEX	用于替代 MC_InitLookAhead 函数,方便不擅长结构体的客户使用。
MC_CrdClear	清除插补缓存区内的插补数据
MC_LnXY	缓存区指令,两维直线插补
MC_LnXYZ	缓存区指令,三维直线插补
MC_LnXYZA	缓存区指令,四维直线插补
MC_LnXYZAB	缓存区指令,五维直线插补
MC_LnXYZABC	缓存区指令,六维直线插补
MC_LnA11	缓存区指令,7维 [~] 14维直线插补
MC_ArcXYC	缓存区指令,XY 平面圆弧插补(以终点坐标和圆心位置为输入参数)
MC_ArcXZC	缓存区指令,XZ 平面圆弧插补(以终点坐标和圆心位置为输入参数)
MC_ArcYZC	缓存区指令,YZ 平面圆弧插补(以终点坐标和圆心位置为输入参数)
MC_HelixXYCZ	缓存区指令,XY 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_HelixXZCY	缓存区指令,XZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_HelixYZCX	缓存区指令,YZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_HelixXYCCount	缓存区指令,XY 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_HelixXZCCount	缓存区指令,XZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_HelixYZCCount	缓存区指令,YZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)
MC_BufPWM	缓存区指令,设置 PWM 频率及占空比
MC_BufIO	缓存区指令,设置 IO 输出
MC_BufIOReverse	缓存区指令,设置 IO 输出一个指定时间的脉冲
MC_BufWaitIO	缓存区指令,等待 IO 输入
MC_BufCmpPluse	缓存区指令,在插补运动中,插入立即比较输出
MC_BufDelay	缓存区指令,延时一段时间
MC_BufMoveVel	在插补运动的过程中插入 BufferMove 轴的速度设定
MC_BufMoveAcc	在插补运动的过程中插入 BufferMove 轴的加速度设定
MC_BufMove	在插补运动的过程中插入阻塞和非阻塞的点位运动。
	重要提示: 已经参与插补坐标系的轴不能再使用 BufMove
MC_BufGear	设定了脉冲输出的个数。它会保证与其后紧挨的指令同时启动,同时停止
MC_CrdData	向插补缓存区增加插补数据
MC_CrdStart	启动插补运动
MC_SetOverride	设置插补运动目标合成速度倍率
MC_GetCrdPos	查询该坐标系的当前坐标位置值
MC_CrdSpace	读取插补缓存区中的剩余空间
MC_CrdStatus	查询插补运动坐标系状态

MC_SetUserSegNum	缓存区指令,设置自定义插补段段号
MC_GetUserSegNum	读取自定义插补段段号
MC_GetRemainderSegNum	读取未完成的插补段段数
MC_GetLookAheadSpace	获取前瞻缓冲区剩余空间
MC_GetLookAheadSegCount	获取前瞻缓存区剩余段数
MC_GetCrdVel	查询该坐标系的当前合成速度值
MC_SetCrdStopDec	设置插补运动平滑停止和急停快慢

参数详细说明:		
<pre>int MC_SetCrdPrm</pre>	n(short nCrdNum, TCrdPrm *pCrdPrm)	
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]	
pCrdPrm	typedef struct CrdPrm	
	{	
	short dimension;	
	short profile[8];	
	double synVelMax;	
	double synAccMax;	
	short evenTime;	
	short setOriginFlag;	
	long originPos[8];	
	TCrdPrm;	
	dimension: 坐标系的维数,取值范围: [1,4]。	
	Profile[8]: 坐标系与规划器的映射关系,每个元素的取值范围: [0,4]	
	synVelMax: 最大合成速度。取值范围: (0,4000), 单位: pulse/ms	
	synAccMax: 最大合成加速度。取值范围: (0,4000), 单位: pulse/(ms*ms)	
	evenTime:最小匀速段时间。取值范围:[0,32767),单位:ms	
	setOriginFlag:表示是否需要指定坐标系的原点坐标的规划位置 0:不需要指定原点坐标值,则坐标系的原点在当前规划位置上;	
	0: 不而安領足原原至你值,例至你系的原点在 originPos 指定的规划位置上 1: 需要指定原点坐标值,坐标系的原点在 originPos 指定的规划位置上	
	originPos[8]: 指定的坐标系原点的规划位置值	
int MC SetCrdPrm	SingleEX(short nCrdNum, short dimension, short profile0, short	
_	profile2, short profile3, short profile4, short profile5, short	
_	profile7, double synVelMax, double synAccMax, short evenTime, short	
-	ong originPos0, long originPos1, long originPos2, long originPos3, long	
	originPos5, long originPos6, long originPos7)	
nCrdNum	nCrdNum:坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]	
dimension	dimension: 坐标系的维数,取值范围: [1,5]。	
profile0	坐标系 X 轴号, 取值范围: [1,8]	
Profile1	坐标系 Y 轴号,取值范围: [1,8],用不到可以设置为 0	
Profile2	坐标系 Z 轴号,取值范围: [1,8],用不到可以设置为 0	
Profile3	坐标系 A 轴号,取值范围: [1,8],用不到可以设置为 0	
Profile4	坐标系 B 轴号,取值范围: [1,8],用不到可以设置为 0	
Profile5	保留,固定为0	
Profile6	保留,固定为0	
Profile7	保留,固定为0	

1/1/K/LIX WW	M. Moparecent.com
synVe1Max	该坐标系的最大合成速度。取值范围: (0,4000),单位: pulse/ms
synAccMax	该坐标系的最大合成加速度。取值范围: (0,4000),单位: pulse/(ms*ms)
evenTime	每个插补段的最小匀速段时间。取值范围: [0,32767),单位: ms
setOriginFlag	表示是否需要指定坐标系的原点坐标的规划位置。
	0: 不需要指定原点坐标值,则坐标系的原点在当前规划位置上
	1: 需要指定原点坐标值,按照后面的 originPos 设定原点坐标值
originPos0	X轴的原点坐标位置,单位脉冲
originPos1	Y轴的原点坐标位置,单位脉冲
originPos2	Z 轴的原点坐标位置,单位脉冲
originPos3	A 轴的原点坐标位置,单位脉冲
originPos4	B轴的原点坐标位置,单位脉冲
originPos5	保留,固定为0
originPos6	保留,固定为0
originPos7	保留,固定为0
int MC_GetCrdPrn	n(short nCrdNum, TCrdPrm *pCrdPrm)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
pCrdPrm	pCrdPrm:
	typedef struct CrdPrm
	{
	short dimension;
	<pre>short profile[8];</pre>
	double synVelMax;
	double synAccMax;
	<pre>short evenTime;</pre>
	short setOriginFlag;
	long originPos[8];
	Tong of Igim os[o], TCrdPrm;
	dimension: 坐标系的维数,取值范围: [1,4]。
	Profile[8]: 坐标系与规划器的映射关系,每个元素的取值范围: [0,4]
	synVelMax: 该坐标系的最大合成速度。取值范围: (0,4000),单位: pulse/ms
	synAccMax: 该坐标系的最大合成加速度。取值范围: (0,4000), 单位: synAccMax: 该坐标系的最大合成加速度。取值范围: (0,4000), 单位:
	pulse/(ms*ms)
	evenTime:每个插补段的最小匀速段时间。取值范围:[0,32767),单位:ms
	setOriginFlag:表示是否需要指定坐标系的原点坐标的规划位置:
	0: 不需要指定原点坐标值,则坐标系的原点在当前规划位置上;
	1: 需要指定原点坐标值,坐标系的原点在 originPos 指定的规划位置上
int MC InitI act	originPos[8]: 指定的坐标系原点的规划位置值
nCrdNum	Ahead(<mark>short</mark> nCrdNum, <mark>short</mark> FifoIndex, TLookAheadPrm* plookAheadPara)
ncranum FifoIndex	坐标系编号 FifeIndex 索引
	FifoIndex 索引
plookAheadPara	plookAheadPara:
	typedef struct _LookAheadPrm
	int lookAheadNum; //前瞻段数 // 前瞻段数 // 首瞻經過中國共產
	TCrdData *pLookAheadBuf; //前瞻缓冲区指针

double dSpeedMax[INTERPOLATION_AXIS_MAX]; //各轴的最大速度(p/ms)
double dAccMax[INTERPOLATION_AXIS_MAX]; //各轴的最大加速度
double dMaxStepSpeed[INTERPOLATION_AXIS_MAX]; //各轴最大速度变化量(相
当于启动速度)
double dScale[INTERPOLATION_AXIS_MAX]; //各轴的脉冲当量
} TLookAheadPrm;

int MC_InitLookAheadSingle(short nCrdNum, short FifoIndex, int lookAheadNum, double* dSpeedMax, double* dAccMax, double *dMaxStepSpeed, double *dScale)

- · ·	
nCrdNum	坐标系编号,通常为1
FifoIndex	FifoIndex 索引,通常为 0
lookAheadNum	前瞻段数,通常为 50 [~] 200
dSpeedMax	数组指针,数组长度为 6,存放各轴的最大速度(p/ms)
dAccMax	数组指针,数组长度为6,存放各轴的最大加速度
dMaxStepSpeed	数组指针,数组长度为6,各轴的最大速度变化量(相当于启动速度)
dScale	数组指针,数组长度为6,存放各轴的脉冲当量(固定为1)

int MC_InitLookAheadSingleEX(short nCrdNum, short FifoIndex, int lookAheadNum, double dSpeedMax0, double dSpeedMax1, double dSpeedMax4, double dAccMax0, double dAccMax1, double dAccMax1, double dAccMax3, double dAccMax3, double dMaxStepSpeed0, double dMaxStepSpeed1, double dMaxStepSpeed2, double dMaxStepSpeed3, double dMaxStepSpeed4, double dScale1, double dScale2, double

dMaxStepSpeed2, double dMaxStepSpeed3, double dMaxStepSpeed4, double dScale0, double dScale1, double dScale2, double dScale3, double dScale4)

abeares, doubte abear	
nCrdNum	坐标系号,通常为1
FifoIndex	缓冲区索引,通常为0
lookAheadNum	前瞻段数,通常为 200
dSpeedMax0	X 轴最大速度,单位脉冲/毫秒,通常为 1000
dSpeedMax1	Y 轴最大速度,单位脉冲/毫秒,通常为 1000
dSpeedMax2	Z 轴最大速度,单位脉冲/毫秒,通常为 1000
dSpeedMax3	A 轴最大速度,单位脉冲/毫秒,通常为 1000
dSpeedMax4	B 轴最大速度,单位脉冲/毫秒,通常为 1000
dAccMax0	X 轴最大加速度,单位脉冲/毫秒/毫秒,通常为 0.1~10,建议 1
dAccMax1	Y 轴最大加速度,单位脉冲/毫秒/毫秒,通常为 0.1~10,建议 1
dAccMax2	Z 轴最大加速度,单位脉冲/毫秒/毫秒,通常为 0.1~10,建议 1
dAccMax3	A 轴最大加速度,单位脉冲/毫秒/毫秒,通常为 0.1~10,建议 1
dAccMax4	B 轴最大加速度,单位脉冲/毫秒/毫秒,通常为 0.1~10,建议 1
dMaxStepSpeed0	X 轴最大速度变化量,单位脉冲/毫秒,通常为 0.1~20,建议 2
dMaxStepSpeed1	Y 轴最大速度变化量,单位脉冲/毫秒,通常为 0.1~20,建议 2
dMaxStepSpeed2	Z 轴最大速度变化量,单位脉冲/毫秒,通常为 0.1~20,建议 2
dMaxStepSpeed3	A 轴最大速度变化量,单位脉冲/毫秒,通常为 0.1~20,建议 2
dMaxStepSpeed4	B 轴最大速度变化量,单位脉冲/毫秒,通常为 0.1~20,建议 2
dScale0	X 轴分量比例,通常固定为 1
dScale1	Y 轴分量比例,通常固定为 1
dScale2	Z 轴分量比例,通常固定为 1
dSca1e3	A 轴分量比例,通常固定为 1
dScale4	B 轴分量比例,通常固定为 1

int MC CrdClear((short nCrdNum, short FifoIndex)
nCrdNum	坐标系编号
FifoIndex	FifoIndex 索引
int MC LnXY(shor	t nCrdNum, long x, long y, double synVel, double synAcc, double velEnd=0, short
FifoIndex=0, long	
nCrdNum	坐标系号,取值范围: [1,CRDSYS MAX COUNT]
X	插补段 x 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
У	插补段 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
synVe1	插补段的目标合成速度。取值范围: (0,4000),单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0,4000),单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0,4000),单位: pulse/ms。该值只有在没有使
	用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
int MC_LnXYZ(sho	ort nCrdNum, long x, long y, long z, double synVel, double synAcc, double
ve1End=0, short F	FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
X	插补段 x 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
у	插补段 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
Z	插补段 z 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
synVel	插补段的目标合成速度。取值范围: (0,4000),单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
int MC_LnXYZA(sh	ort nCrdNum, long x, long y, long z, long a, double synVel, double synAcc, double
ve1End=0, short F	FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
X	插补段 x 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
У	插补段 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
Z	插补段 z 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
a	插补段 a 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
	short nCrdNum, long x, long y, long z, long a, long b, double synVel, double
synAcc, double ve	e1End=0, short FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
X	插补段 x 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。

<u>博派科技 www.bopaitech.com 售前电话/微信 1311318687</u> 1
--

1/1 / 1/1 / 1/2 / 1/2	w.bopartecn.com
у	插补段 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
Z	插补段 z 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
a	插补段 a 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
b	插补段 b 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
<pre>int MC_LnXYZABC</pre>	(short nCrdNum, long x, long y, long z, long a, long b, long c, double
synVel, double sy	ynAcc, double velEnd=0, short FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
X	插补段 x 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
у	插补段 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
Z	插补段 z 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
a	插补段 a 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
b	插补段 b 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
С	插补段 c 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
_	ort nCrdNum, long* pPos, short nDim, double synVel, double synAcc, double
	foIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
pPos	插补各轴坐标。取值范围: [-1073741823, 1073741823], 单位: pulse。
nDim	参与插补轴数量
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围:[0,1],默认为:0
segNum	用户自定义行号
_	nort nCrdNum, long x, long y, double xCenter, double yCenter, short
	e synVel, double synAcc, double velEnd=0, short FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
X	圆弧插补 x 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
У	圆弧插补 y 轴终点坐标值。取值范围: [-1073741823, 1073741823], 单位: pulse。
xCenter	圆弧插补的圆心 x 方向相对于起点位置的偏移量
yCenter	圆弧插补的圆心 Y 方向相对于起点位置的偏移量
circleDir	圆弧的旋转方向 0 顺时针圆弧 1 逆时针圆弧

守机冲打文 WW	w.bopartecn.com
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
int MC ArcXZC(sl	nort nCrdNum, long x, long z, double xCenter, double zCenter, short
	e synVel, double synAcc, double velEnd=0, short FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS MAX COUNT]
X	圆弧插补 x 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
Z	圆弧插补 z 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
xCenter	圆弧插补的圆心 x 方向相对于起点位置的偏移量
zCenter	圆弧插补的圆心 z 方向相对于起点位置的偏移量
circleDir	圆弧的旋转方向 0 顺时针圆弧 1 逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
_	nort nCrdNum, long y, long z, double yCenter, double zCenter, short
	e synVel, double synAcc, double velEnd=0, short FifoIndex=0, long segNum = 0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
у	圆弧插补 y 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
Z	圆弧插补 z 轴终点坐标值。取值范围: [-1073741823, 1073741823],单位: pulse。
yCenter	圆弧插补的圆心y方向相对于起点位置的偏移量
zCenter	圆弧插补的圆心z方向相对于起点位置的偏移量
circleDir	圆弧的旋转方向0顺时针圆弧1逆时针圆弧
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
<pre>int MC_HelixXYCZ</pre>	K(short nCrdNum, long x, long y, long z, double xCenter, double yCenter, float
k, short circlel	Dir, double synVel, double synAcc, double velEnd=0, short FifoIndex=0, long
segNum=-1)	
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
X	X轴终点坐标
у	Y轴终点坐标
Z	Z 轴终点坐标
xCenter	圆弧插补的圆心 X 方向相对于起点位置的偏移量
yCenter	圆弧插补的圆心Y方向相对于起点位置的偏移量
k	螺距
l	·

 	W.bopattech.com 自前电讯/城市 13113160671
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
<pre>int MC_HelixXZC</pre>	Y(short nCrdNum, long x, long y, long z, double xCenter, double yCenter, float
k, short circle	Dir, double synVel, double synAcc, double velEnd=0, short FifoIndex=0, long
segNum=-1)	
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
X	X 轴终点坐标
у	Y轴终点坐标
Z	Z 轴终点坐标
xCenter	圆弧插补的圆心 X 方向相对于起点位置的偏移量
yCenter	圆弧插补的圆心Y方向相对于起点位置的偏移量
k	螺距
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
velEnd	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
<pre>int MC_HelixYZC</pre>	X(short nCrdNum, long x, long y, long z, double xCenter, double yCenter, float
k, short circle	Dir, double synVel, double synAcc, double velEnd=0, short FifoIndex=0, long
segNum=-1)	
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
X	X 轴终点坐标
У	Y轴终点坐标
Z	Z轴终点坐标
xCenter	圆弧插补的圆心 X 方向相对于起点位置的偏移量
yCenter	圆弧插补的圆心 Y 方向相对于起点位置的偏移量
k	螺距
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVel	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
	Count (short nordNum double vCenter double vCenter float k float

int MC_HelixXYCCount(short nCrdNum, double xCenter, double yCenter, float k, float
CirlceCount, short circleDir, double synVel, double synAcc, double velEnd=0, short
FifoIndex=0, long segNum=-1)

序派件权 WW	/w.bopartecn.com 告 的 电 站/ 放信 1311318087.
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
xCenter	圆弧插补的圆心 X 方向相对于起点位置的偏移量,单位脉冲
yCenter	圆弧插补的圆心 Y 方向相对于起点位置的偏移量,单位脉冲
k	螺距,单位脉冲
CirlceCount	旋转圈数,可以为小数
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
<pre>int MC_HelixXZ0</pre>	CCount(short nCrdNum, double xCenter, double zCenter, float k, float
CirlceCount, sl	nort circleDir, double synVel, double synAcc, double velEnd=0, short
FifoIndex=0, lor	ng segNum=-1)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
xCenter	圆弧插补的圆心 X 方向相对于起点位置的偏移量,单位脉冲
zCenter	圆弧插补的圆心 Z 方向相对于起点位置的偏移量,单位脉冲
k	螺距,单位脉冲
CirlceCount	旋转圈数,可以为小数
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
<pre>int MC_HelixYZC</pre>	CCount(short nCrdNum, double yCenter, double zCenter, float k, float
CirlceCount, sl	nort circleDir, double synVel, double synAcc, double velEnd=0, short
FifoIndex=0, lor	ng segNum=-1)
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
yCenter	圆弧插补的圆心Y方向相对于起点位置的偏移量,单位脉冲
zCenter	圆弧插补的圆心Z方向相对于起点位置的偏移量,单位脉冲
k	螺距,单位脉冲
CirlceCount	旋转圈数,可以为小数
circleDir	圆弧的旋转方向,0顺时针圆弧,1逆时针圆弧
synVe1	插补段的目标合成速度。取值范围: (0, 4000), 单位: pulse/ms。
synAcc	插补段的合成加速度。取值范围: (0, 4000), 单位: pulse/(ms*ms)。
ve1End	插补段的终点速度。取值范围: [0, 4000), 单位: pulse/ms。该值只有在没有
	使用前瞻预处理功能时才有意义,否则该值无效。默认为:0
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义段号
int MC_BufPWM(s	short nCrdNum, short nPwmNum , double dFreq, double dDuty, short
nFifoIndex, long	lUserSegNum=-1)

nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]		
nPwmNum	PWM 通道,从1开始		
dFreq	频率,单位 HZ		
dDuty	占空比,0~100		
nFifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0		
1UserSegNum	用户自定义行号		
int MC_BufIO(short nCrdNum, unsigned short doType, unsigned short nCardIndex, unsigned short			
doMask, unsigned	doMask, unsigned short doValue, short FifoIndex=0, long segNum = 0)		
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]		
doType	指定数字 IO 类型		
	MC_GPO(该宏定义为 12) 通用输出		
nCardIndex	板卡索引(0~63),0是主模块,扩展模块从1开始		
doMask	缓存区 IO 的输出控制掩码		
doValue	缓存区 IO 的输出值		

插补缓存区号,取值范围: [0,1],默认为: 0

segNum 例程:

FifoIndex

MC_BufIO(1, 12, 0, 0X0001, 0X0001, 0, 0);//打开YO

用户自定义行号

MC BufIO(1,12,0,0X0001,0,0,0);//关闭YO

//0X0008 的 Bit3 是 1, 代表要对 Y3 进行操作

MC BufIO(1, 12, 0, 0X0008, 0X0008, 0, 0);//打开 Y3

MC BufIO(1, 12, 0, 0X0008, 0, 0, 0);//关闭 Y3

//0X0009 的 Bit3 和 Bit0 是 1, 代表要对 Y0 和 Y3 进行操作

MC BufIO(1, 12, 0, 0X0009, 0X0009, 0, 0);//打开 Y3 和 Y0

MC_BufIO(1, 12, 0, 0X0009, 0, 0, 0);//关闭 Y3 和 Y0

int MC_BufIOReverse(short nCrdNum, unsigned short nDoType, unsigned short nCardIndex, unsigned short doMask, unsigned short doValue, unsigned short nReverseTime, short FifoIndex=0, long segNum = 0)

nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
nDoType	固定为 12
nCardIndex	固定为0
doMask	缓存区 I0 的输出控制掩码
doValue	缓存区 IO 的输出值
nReverseTime	持续时间,单位毫秒
FifoIndex	固定为0
segNum	用户自定义行号

int MC_BufWaitIO(short nCrdNum, unsigned short nCardIndex, unsigned short

nIOPortIndex, unsigned short nLevel, unsigned long lWaitTimeMS, unsigned short

nFilterTime, <mark>short</mark> Fifolndex, <mark>long</mark> segNum)

in first time, short i fromdex, fong segnam/	
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
nCardIndex	板卡索引(0~63),0是主模块,扩展模块从1开始
nIOPortIndex:	IO 索引,0~15

	M.DOPAILECN.COM
nLevel:	1等待有信号输入,0等待信号消失
1WaitTimeMS:	等待超时时间,单位 ms(超过该时间,会自动执行下一条命令,0是一直等待
nFilterTime:	滤波时间,单位 ms。连续在这段时间检测到信号,才认为真正有信号
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum:	用户自定义行号
<pre>int MC_BufCmpPlu</pre>	ise(short nCrdNum, short nChannel, short nPluseType, short nTime, short
nTimerFlag, short	nFifoIndex, long 1SegNum)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
nChanne1	通道号,1或者2
nP1useType	通道输出类型,0低电平,1高电平,2脉冲
nTime	脉冲时间
nTimerFlag	Ous, 1 毫秒
nFifoIndex	固定为0
1SegNum	用户自定义行号
坐标系1插入一行	指令,控制比较输出通道 2,输出一个 100us 的脉冲
MC_BufCmpPluse(1	1, 2, 2, 100, 0, 0, 0)
坐标系1插入一行	指令,控制比较输出通道 1,输出一个 10ms 的脉冲
MC_BufCmpPluse(1	, 1, 2, 10, 1, 0, 0)
<pre>int MC_BufDelay(</pre>	(short nCrdNum, unsigned long ulDelayTime, short FifoIndex=0, long segNum)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
ulDelayTime	延时时间,单位 ms
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
segNum	用户自定义行号
int MC_BufMoveVe	el(short nCrdNum, short nAxisMask, float* pVel, short nFifoIndex, long
1SegNum);	
nCrdNum	坐标系号。正整数,取值范围: [1, CRDSYS_MAX_COUNT]。
nAxisMask	需要进行点位运动的轴掩码,每一位代表一个轴,该位为1表示对应轴需要设定
	速度。该轴不能处于坐标系中。
pVe1	点位运动的速度,单位: pulse/ms,这里传入的是一个数组长度为8的地址指
	针
nFifoIndex	插补缓存区号。正整数,取值范围: [0, 1],默认值为: 0。
1SegNum	用户自定义段号
int MC_BufMoveAc	ec(short nCrdNum, short nAxisMask, float* pAcc, short nFifoIndex, long
1SegNum);	
nCrdNum	坐标系号。正整数,取值范围: [1, CRDSYS_MAX_COUNT]。
nAxisMask	需要进行点位运动的轴掩码,每一位代表一个轴,该位为1表示对应轴需要设定
	加速度。该轴不能处于坐标系中。
pAcc	点位运动的加速度,单位: pulse/ms/ms,这里传入的是一个数组长度为8的地
	址指针
nFifoIndex	插补缓存区号。正整数,取值范围: [0,1],默认值为: 0。
1SegNum	用户自定义段号
int MC_BufMove(s	short nCrdNum, short nAxisMask, long* pPos, short nModalMask, short
nFifoIndex, long	1SegNum);
nCrdNum	坐标系号。正整数,取值范围: [1, CRDSYS_MAX_COUNT]。
	第15 五 廿 03

 一 	W.bopartecn.com
nAxisMask	需要进行点位运动的轴掩码,每一位代表一个轴,该位为1表示对应轴需要设定
	目标位置。该轴不能处于坐标系中。
pPos	点位运动目标位置,单位: pulse,这里传入的是一个数组长度为8的地址指针
nModalMask	点位运动的模式,每一位代表一个轴。
	0:该指令为非阻塞指令,即不阻塞后续的插补缓存区指令的执行。
	1:该指令为阻塞指令,将会阻塞后续的插补缓存区指令的执行。
nFifoIndex	插补缓存区号。正整数,取值范围: [0, 1],默认值为: 0。
1SegNum	用户自定义段号
	<pre>short nCrdNum, short nAxisMask, long* pPos, short nFifoIndex, long 1SegNum);</pre>
nCrdNum	坐标系号。正整数,取值范围: [1, CRDSYS_MAX_COUNT]。
nAxisMask	需要进行点位运动的轴掩码,每一位代表一个轴,该位为1表示对应轴需要设定
	跟随量。该轴不能处于坐标系中。
pPos	跟随运动进给量,单位: pulse, 这里传入的是一个数组长度为8的地址指针
nFifoIndex	插补缓存区号。正整数,取值范围: [0, 1], 默认值为: 0。
1SegNum	用户自定义段号
_	short nCrdNum, void *pCrdData, short FifoIndex=0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
pCrdData	插补数据
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
<pre>int MC_CrdStart</pre>	(short mask, short option)
mask	从 bit0~bit1 按位表示需要启动的坐标系,其中, bit0 对应坐标系 1, bit1 对
	应坐标系 2; 0: 不启动该坐标系, 1: 启动该坐标系。
option	从 bit0~bit1 按位表示坐标系需要启动的缓存区的编号, 其中, bit0 对应坐标
	系 1, bit1 对应坐标系 2; 0: 启动坐标系中 FIF00 的运动, 1: 启动坐标系中 FIF01
	的运动。
重点说明	函数返回值含义如下:
	MN, M 代表返回值十位, N 代表返回值个位
	M代表轴号
	N代表失败类型
	N=1:轴M不在插补模式,无法启动,原因是未建立坐标系或者中途进入其他模式
	N=2:轴M报警,无法启动坐标系
	N=3:轴 M 急停,无法启动坐标系
	N=4:轴M正软限位触发,无法启动坐标系
	N=5:轴 M 正硬限位触发,无法启动坐标系
	N=6:轴 M 负软限位触发,无法启动坐标系
	N=7:轴 M 负硬限位触发,无法启动坐标系
	N=8:轴M跟随误差超限,无法启动坐标系
<pre>int MC_SetOverr</pre>	ride(short nCrdNum, double synVelRatio)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
synVelRatio	设置的插补目标速度倍率,取值范围: (0,1],系统默认该值为: 1。
•	os(short nCrdNum, double *pPos)
nCrdNum	坐标系号,取值范围: [1,CRDSYS MAX COUNT]
pPos	读取的坐标系的坐标值,单位: pulse。该参数应该为一个数组首元素的指针,
PI OB	数组的元素个数取决于该坐标系的维数。
int MC CrdSnaco	数组即记录 数基份 该主称录即维数。 (short nCrdNum, long *pSpace, short FifoIndex=0)
The Mc_cruspace	(Short nerunin, rolly *popace, short refrontingex-0)

G. Di	W.DOPARCOII.COIII
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
pSpace	读取插补缓存区中的剩余空间
FifoIndex	插补缓存区号,取值范围:[0,1],默认为:0
<pre>int MC_CrdStatus</pre>	s(short nCrdNum, short *pCrdSts, long *pSegment, short FifoIndex=0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
pCrdSts	读取插补运动状态
	//坐标系状态位定义(注意位判断用逻辑与,不要用逻辑等于)
	#define CRDSYS_STATUS_PROG_RUN (0x00000001)//启动中
	#define CRDSYS_STATUS_PROG_STOP (0x00000002)//平滑停止中
	#define CRDSYS_STATUS_PROG_ESTOP (0x00000004)//紧急停止中
	#define CRDSYS_STATUS_FIFO_FINISH_0 (0x00000010)//板卡FIFO-0 数据已执
	行完毕的状态位
	#define CRDSYS_STATUS_FIFO_FINISH_1 (0x00000020)//板卡FIFO-1 数据已
	执行完毕的状态位
pSegment	读取当前已经完成的插补段数,当重新建立坐标系或者调用 MC_CrdClear 指令
	后,该值会被清零
FifoIndex	所要查询运动状态的 FifoIndex 号,取值范围: [0,1],默认为: 0
int MC_SetUserSe	egNum(short nCrdNum, long segNum, short FifoIndex=0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
segNum	设置用户自定义的插补段段号
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
int MC GetUserSe	egNum(short nCrdNum, long *pSegment, short FifoIndex=0)
nCrdNum	坐标系号,取值范围: [1,CRDSYS_MAX_COUNT]
pSegment	读取的用户自定义的插补段段号
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
	nderSegNum(short nCrdNum, long *pSegment, short FifoIndex=0)
nCrdNum	坐标系号,取值范围: [1, CRDSYS_MAX_COUNT]
pSegment	读取的剩余插补段的段数
FifoIndex	插补缓存区号,取值范围: [0,1],默认为: 0
	neadSpace(short nCrdNum, long *pSpace, short nFifoIndex=0)
nCrdNum	坐标系编号
pSpace	读取前瞻缓存区中的剩余空间
nFifoIndex	nFifoIndex 索引
	neadSegCount(short nCrdNum, long *pSegCount, short nFifoIndex=0)
nCrdNum	坐标系编号
pSegCount	前瞻缓存区剩余段数
nFifoIndex	削瞻缓行区测宗权数 FifoIndex 索引 FifoIndex parameters FifoIndex paramet
nCrdNum	l (short nCrdNum, double *pSynVel)
	坐标系编号
pSynVe1	速度,单位脉冲/毫秒
	ppDec(short nCrdNum, double decSmoothStop, double decAbruptStop)
nCrdNum	坐标系编号,从1开始
decSmoothStop	坐标系平滑停止系数,取值范围 0.0001~1,数值越大,停止越快
decAbruptStop	坐标系紧急停止系数,取值范围 0.0001~1,数值越大,停止越快

5.10、硬件捕获类 API

API	说明
MC_SetCaptureMode	设置编码器捕获方式,并启动捕获
MC_GetCaptureMode	读取编码器捕获方式
MC_GetCaptureStatus	读取编码器捕获状态
MC_SetCaptureSense	设置捕获电平
MC_GetCaptureSense	获取捕获电平
MC_ClearCaptureStatus	清除捕获状态

参数详细说明:		
<pre>int MC_SetCapturel</pre>	Mode(short nEncodeNum, short nMode)	
nEncodeNum	编码器轴号	
nMode	编码器捕获模式	
	1: Home 捕获	
	2: Index 捕获	
	3: 探针捕获	
<pre>int MC_GetCapturel</pre>	Mode(short nEncodeNum, short *pMode, short nCount=1)	
nEncodeNum	编码器起始轴号	
pMode	编码器捕获模式	
nCount	读取的轴数,默认为 1 , 1 次最多可以读取 8 个编码器轴	
<pre>int MC_GetCaptureS</pre>	Status(short nEncodeNum, short *pStatus, long *pValue, short	
nCount=1, unsigned	<pre>long *pClock=NULL)</pre>	
nEncodeNum	编码器起始轴号	
pStatus	读取编码器捕获状态 为 1 时表示对应轴捕获触发	
pValue	读取编码器捕获值,当捕获触发时,编码器捕获值会自动更新	
nCount	读取的轴数,默认为 1 , 1 次最多可以读取 8 个编码器轴	
pClock	读取控制器时钟	
<pre>int MC_SetCaptureS</pre>	Sense(short nEncodeNum, short nMode , short nSence)	
nEncodeNum	编码器起始轴号	
nMode	捕获模式	
	1: Home 捕获	
	2: Index 捕获	
nSence	捕获电平	
	0: 下降沿触发	
	1: 上升沿触发	
<pre>int MC_GetCaptureS</pre>	Sense(short nEncodeNum, short nMode , short *pSence)	
nEncodeNum	编码器号	
nMode	捕获模式	
	1: Home 捕获	
	2: Index 捕获	
pSence	捕获电平,0或者1	
	0: 下降沿触发	
	1: 上升沿触发	
int MC ClearCaptur	reStatus(short nEncodeNum)	

nEncodeNum 需要被清除捕获状态的编码器轴号

5.11、Gear/电子齿轮类 API

API	说明
MC_PrfGear	设置指定轴进入电子齿轮模式
MC_SetGearMaster	设置电子齿轮运动跟随主轴
MC_GetGearMaster	读取电子齿轮运动跟随主轴
MC_SetGearRatio	设置电子齿轮比
MC_GetGearRatio	获取电子齿轮比
MC_GearStart	启动电子齿轮运动
MC_GearStop	停止电子齿轮运动
MC_SetGearEvent	设置电子齿轮触发事件
MC_GetGearEvent	获取电子齿轮触发事件
MC_SetGearIntervalTime	设置电子齿轮平滑系数
MC_GetGearIntervalTime	获取电子齿轮平滑系数

参数详细说明:			
<pre>int MC_PrfGear(short nAxisNum, short nDir=0)</pre>			
nAxisNum	轴号		
nDir	跟随方向,0:双向跟随,1:正向跟随,-1:负向跟随		
<pre>int MC_SetGearMa</pre>	ster(short nAxisNum, short nMasterAxisNum, short nMasterType=2)		
nAxisNum	轴号		
nMasterAxisNum	主轴号		
nMasterType	主轴类型,2,跟随规划,1,跟随编码器		
<pre>int MC_GetGearMa</pre>	ster(short nAxisNum, short *pnMasterAxisNum, short *pMasterType=NULL)		
nAxisNum	轴号		
pnMasterAxisNum	主轴号		
pMasterType	主轴类型,2,跟随规划,1,跟随编码器		
<pre>int MC_SetGearRa</pre>	tio(short nAxisNum, long 1MasterEven, long 1SlaveEven, long		
1MasterSlope=0,1	MasterSlope=0, long 1StopSmoothTime = 200)		
nAxisNum	轴号		
1MasterEven	传动比系数,主轴位移,单位: pulse		
1S1aveEven	传动比系数,从轴位移,单位: pulse		
1MasterSlope	主轴离合区位移,单位: pulse 取值范围:不能小于0或者等于1		
1StopSmoothTime	脱离离合区缓冲时间,单位: ms		
<pre>int MC_GetGearRa</pre>	<pre>int MC_GetGearRatio(short nAxisNum, long *pMasterEven, long *pSlaveEven, long</pre>		
*pMasterSlope, long *pStopSmoothTime)			
nAxisNum	轴号		
1MasterEven	传动比系数,主轴位移,单位: pulse		
1S1aveEven	传动比系数,从轴位移,单位: pulse		
1MasterSlope	主轴离合区位移,主轴离合区位移,主轴离合区位移,单位:		
	pulse		
1StopSmoothTime	脱离离合区缓冲时间,单位: ms		
int MC_GearStart(long lMask)			

1Mask	按位指示需要启动 Gear 运动的轴号。当 bit 位为 1 时表示启动对应的轴
IMask	
	Bit7、6、5、4、3、2、1、0对应8轴、7轴、6轴、5轴、4轴、3轴、2轴、1
	<u> </u>
	(long 1AxisMask, long 1EMGMask)
1Mask	按位指示需要停止 Gear 运动的轴号。
	当 bit 位为 1 时表示停止对应的轴
	Bit7~0 对应 8~1 轴
1EMGMask	按位指示需要立即停止 Gear 运动的轴号。
	当 bit 位为 1 时表示立即停止对应的轴,忽略平滑停止时间
	当 bit 位为 0 时表示平滑停止对应的轴, StopSmoothTime 时间内平滑停止
	Bit7 [°] 0 对应 8 [°] 1 轴
int MC SatCookE	vent(short nAxisNum, short nEvent, double startPara0, double startPara1)
_	
nAxisNum	轴号
nEvent	事件,具体参见头文件
	#define GEAR_EVENT_IMMED 1
	#define GEAR_EVENT_BIG_EQU 2
	#define GEAR_EVENT_SMALL_EQU 3
	#define GEAR_EVENT_IO_ON 4
	#define GEAR EVENT IO OFF 5
	GEAR EVENT IMMED: 立即启动电子齿轮
	GEAR_EVENT_BIG_EQU: 主轴规划或者编码器位置大于等于指定数值时启动电子齿
	轮
	GEAR_EVENT_SMALL_EQU: 主轴规划或者编码器位置小于等于指定数值时启动电子
	齿轮 齿轮 上版 上版 是相观别或有编码面直升 1 等 1 相定数值时间均电 1
	GEAR_EVENT_IO_ON: 指定 IO 为 ON 时启动电子齿轮
	GEAR_EVENT_IO_OFF: 指定 IO 为 OFF 时启动电子齿轮
startPara0	startPara0: 事件参数 0
	GEAR_EVENT_BIG_EQU和GEAR_EVENT_SMALL_EQU时代表编码器或者规划值
	GEAR_EVENT_IO_ON 和 GEAR_EVENT_IO_OFF 时代表 IO 端口号
startPara1	保留
int MC_GetGearE	vent(short nAxisNum, short *pEvent, double *pStartPara0, double
*pStartPara1)	
nAxisNum	轴号
nEvent	事件,具体参见头文件
III. CITC	#define GEAR_EVENT_IMMED 1
	#define GEAR EVENT BIG EQU 2
	#define GEAR_EVENT_IO_ON 4
	#define GEAR_EVENT_IO_OFF 5
	GEAR_EVENT_IMMED: 立即启动电子齿轮
	GEAR_EVENT_BIG_EQU: 主轴规划或者编码器位置大于等于指定数值时启动电子齿 轮
	GEAR_EVENT_SMALL_EQU: 主轴规划或者编码器位置小于等于指定数值时启动电子
	齿轮
	GEAR_EVENT_IO_ON: 指定 IO 为 ON 时启动电子齿轮

售前电话/微信 13113186871

I J V V I I J		
	GEAR_EVENT_IO_OFF: 指定 IO 为 OFF 时启动电子齿轮	
startPara0	startPara0: 事件参数 0	
	GEAR_EVENT_BIG_EQU 和 GEAR_EVENT_SMALL_EQU 时代表编码器或者规划值	
	GEAR_EVENT_IO_ON 和 GEAR_EVENT_IO_OFF 时代表 IO 端口号	
startParal	保留	
int MC_SetGearIntervalTime(short nAxisNum, short nIntervalTime)		
nAxisNum	从轴轴号	
nIntervalTime	滤波系数,2~32768,越大越平滑不抖动,越小跟随性越好误差小,需要平衡	
int MC_GetGearIntervalTime(short nAxisNum, short *nIntervalTime)		
nAxisNum	从轴轴号	
nIntervalTime	滤波系数,2 ³ 2768,越大越平滑不抖动,越小跟随性越好误差小,需要平衡	

```
例程代码:
//设置轴3轴4进入电子齿轮模式,双向跟随
MC PrfGear(3,0);
MC_PrfGear(4,0);
//设置轴3轴4跟随轴1的编码器
MC SetGearMaster (3, 1, 1);
MC SetGearMaster (4, 1, 1);
//设置轴3跟随比例为1比1
MC_SetGearRatio(3, 1, 1, 0, 0);
//设置轴4跟随比例为1比1
MC_SetGearRatio(4, 1, 1, 0, 0);
//设置轴3跟随触发方式为立即开始
MC_SetGearEvent(3, 1, 0, 0)
//设置轴4跟随触发方式为立即开始
MC SetGearEvent (4, 1, 0, 0)
//启动轴3和轴4的跟随
MC_GearStart(0X0C);
```

5.12、电子凸轮类 API

API	说明
MC_PrfCam	设置指定轴进入电子凸轮模式
MC_SetCamMaster	设置电子凸轮运动跟随主轴
MC_GetCamMaster	读取电子凸轮运动跟随主轴
MC_SetCamEvent	设置电子凸轮触发事件
MC_GetCamEvent	获取电子凸轮触发事件
MC_SetCamIntervalTime	设置电子凸轮均值滤波时间
MC_GetCamIntervalTime	获取电子凸轮均值滤波时间
MC_SetUpCamTable	建立凸轮表
MC_DownCamTable	下载电子凸轮表到控制器
MC_CamStart	启动电子凸轮运动
MC_CamStop	停止电子凸轮运动

参数详细说明:	
int MC_PrfCam(short n.	AxisNum, short nTableNum)
nAxisNum	轴号
nTableNum	凸轮表编号,1 [~] 16
<pre>int MC_SetCamMaster(s)</pre>	hort nAxisNum, short nMasterAxisNum, short nMasterType)
nAxisNum	轴号
nMasterAxisNum	主轴号
nMasterType	主轴类型,1:跟随编码器2:跟随规划
<pre>int MC_GetCamMaster(s)</pre>	hort nAxisNum, short *pnMasterAxisNum, short *pMasterType=NULL)
nAxisNum	轴号
pnMasterAxisNum	主轴号
pMasterType	主轴类型,1:跟随编码器2:跟随规划
int MC_SetCamEvent(she	ort nAxisNum, short nEvent, double startPara0, double startPara1)
nAxisNum	轴号
nEvent	1: 立即启动电子齿轮
	2: 主轴规划或者编码器位置大于等于指定数值时启动凸轮
	3: 主轴规划或者编码器位置小于等于指定数值时启动凸轮
	4: 指定 IO 为 ON 时启动电子齿轮
	5: 指定 IO 为 OFF 时启动电子齿轮
startPara0	事件参数 0
	nEvent=2 或者 3 时代表编码器或者规划值
	nEvent=4 或者 5 时代表 IO 端口号
startParal	保留
	ort nAxisNum, short *pEvent, double *pStartPara0, double *pStartPara1)
nAxisNum	轴号
pEvent	1: 立即启动电子齿轮
	2: 主轴规划或者编码器位置大于等于指定数值时启动凸轮
	3: 主轴规划或者编码器位置小于等于指定数值时启动凸轮
	4: 指定 IO 为 ON 时启动电子齿轮
	5: 指定 IO 为 OFF 时启动电子齿轮

pStartPara0	事件参数 0
	nEvent=2 或者 3 时代表编码器或者规划值
	nEvent=4 或者 5 时代表 IO 端口号
pStartPara1	保留
<pre>int MC_SetCamInterval</pre>	Time(short nAxisNum, short nIntervalTime)
nAxisNum	轴号
nIntervalTime	平滑时间,单位 ms
<pre>int MC_GetCamInterval</pre>	Time(short nAxisNum, short *nIntervalTime)
nAxisNum	轴号
nIntervalTime	平滑时间,单位 ms
<pre>int MC_SetUpCamTable(</pre>	short nCamTableNum, long lMasterValueMax, long *plSlaveCamData, long lCamTableLen)
nCamTab1eNum	表号,1~16
1MasterValueMax	一个周期主轴最大值,单位脉冲
plSlaveCamData	从轴数据存放指针,数据单位:脉冲
1CamTab1eLen	表长度
<pre>int MC_DownCamTable(i)</pre>	nt *pProgress)
pProgress	下载进度
<pre>int MC_CamStart(long</pre>	lMask)
LMask	1Mask 按位指示需要启动 Cam 运动的轴号。当 bit 位为 1 时表示启动对应的轴 Bit7、6、5、4、3、2、1、0 对应 8 轴、7 轴、6 轴、5 轴、4 轴、3 轴、2 轴、
	1 轴
int MC_CamStop(long 1.	AxisMask, long 1EMGMask)
lAxisMask	1Mask 按位指示需要停止 Cam 运动的轴号。当 bit 位为 1 时表示启动对应的轴 Bit7、6、5、4、3、2、1、0 对应 8 轴、7 轴、6 轴、5 轴、4 轴、3 轴、2 轴、1 轴
1EMGMask	1EMGMask 按位指示需要停止 Cam 运动的轴号。当 bit 位为 1 时表示立即停止对应的轴 Bit7、6、5、4、3、2、1、0 对应 8 轴、7 轴、6 轴、5 轴、4 轴、3 轴、2 轴、1 轴

5.13、比较输出(飞拍)类 API

API	说明
MC_CmpPluse	设置比较器输出 IO 立即输出指定电平或者脉冲
MC_CmpBufSetChannel	设置比较缓冲区对应输出通道
MC_CmpBufData	向比较器缓冲区发送比较数据
MC_CmpBufSts	获取比较器缓冲区状态
MC_CmpBufStop	停止比较器缓冲区
MC_CmpRpt	设置比较器缓冲区等比输出
MC_CmpSetTriggerCount	设置比较器缓冲区触发计数初值
MC_CmpGetTriggerCount	获取比较器缓冲区触发计数初值

参数详细说明:	
<pre>int MC_CmpPluse(shor</pre>	t nChannelMask, short nPluseType1, short nPluseType2, short
nTime1, short nTime2,	<pre>short nTimeFlag1, short nTimeFlag2)</pre>
nChanne1	bit0 表示通道 1, bit1 表示通道 2
nPluseType1	通道1输出类型,0低电平1高电平2脉冲
nPluseType2	通道2输出类型,0低电平1高电平2脉冲
nTime1	通道1脉冲持续时间
nTime2	通道2脉冲持续时间
nTimeFlag1	比较器 1 的脉冲时间单位,0:us, 1:ms
nTimeFlag2	比较器 2 的脉冲时间单位,0:us, 1:ms
<pre>int MC_CmpBufSetChan</pre>	nel(short nBuf1ChannelNum, short nBuf2ChannelNum);
nBuf1ChannelNum	比较缓冲区1对应输出通道号,默认为通道1,可设置为1或者2
nBuf2ChannelNum	比较缓冲区2对应输出通道号,默认为通道2,可设置为1或者2
<pre>int MC_CmpBufData(sh</pre>	ort nCmpEncodeNum, short nPluseType, short nStartLevel, short nTime,
long *pBuf1, short n	BufLen1, long *pBuf2, short nBufLen2, short nAbsPosFlag=0)
nCmpEncodeNum	轴号
nPluseType	2表示输出脉冲,1表示反转电平。
nStartLevel	按位设置比较器输出的初始电平, bit0 比较器 11, bit1 比较器 2; 0: 表
	示初始为低电平; 1:表示初始为高电平
nTime	输出脉冲时,该参数用来设定脉冲输出宽度,取值范围:[1,65535],单位:
	us,输出电平时,该参数无效
pBuf1	比较器1数据缓冲区,位置值为相对当前位置的距离
nBufLen1	比较器 1 数据缓冲区长度,0 [~] 128
pBuf2	比较器2数据缓冲区,位置值为相对当前位置的距离
nBufLen2	比较器 2 数据缓冲区长度,0 [~] 128
nAbsPosF1ag	0: 相对当前位置 1: 绝对位置
<pre>int MC_CmpBufSts(sho</pre>	rt *pStatus, unsigned short *pCount1, unsigned short *pCount2)
pStatus	按位指示比较器状态 bit0 代表比较器 1, bit1 代表比较器 2
	0 代表板卡比较缓冲区数据已空,1 代表板卡比较缓冲区数据未完成
pCount1	比较器1板卡缓冲区剩余待比较数据
pCount2	比较器2板卡缓冲区剩余待比较数据
<pre>int MC_CmpBufStop(sh</pre>	,
nChannel	bit0 代表通道 1, bit1 代表通道 2
	第 65 页 共 93

int MC_CmpRpt(short nCmpEncodeNum, short nChannel, long 1StartPos, long 1RptTime, long			
lInterval, short nTi	lInterval, short nTime, short nPluseType, short nAbsPosFlag)		
nCmpEncodeNum	编码器通道		
nChanne1	bit0 代表比较缓冲区 1, bit1 代表比较缓冲区 2		
1StartPos	起始位置,单位:脉冲		
1RptTime	重复次数		
1Interval	位置间隔,单位:脉冲		
nTime	脉冲输出时,脉冲持续时间,单位 us		
nPluseType	通道输出类型,0低电平1高电平2脉冲		
nAbsPosFlag	0: 相对当前位置 1: 绝对位置		
<pre>int MC_CmpSetTriggerCount(unsigned long 1TriggerCount1, unsigned long 1TriggerCount2)</pre>			
1TriggerCount1	比较器 1 触发计数初值		
1TriggerCount2	比较器 2 触发计数初值		
<pre>int MC_CmpGetTriggerCount(unsigned long* plTriggerCount1, unsigned long* plTriggerCount2)</pre>			
plTriggerCount1	比较器 1 触发计数值		
plTriggerCount2	比较器 2 触发计数值		

示例代码:

int iRes = 0;

```
//下面代码控制比较输出端口输出高电平(手动测试用)。
```

- //第1个参数为1代表通道1
- //第2个参数为1,代表立即输出高电平
- //第3个参数预留,固定为1,无意义
- //第4个参数代表脉冲时间,这里因为是输出高电平,并非脉冲,所以无意义
- //第5个参数为预留,跟第4个参数相同即可
- //第6个参数为时间单位,0代表微秒,1代表毫秒(这里因为是输出高电平,所以参数6无意义)
- //第7个参数为预留,与第6个参数相同即可
- iRes = MC CmpPluse (1, 1, 1, 100, 100, 0, 0);
- //下面代码控制比较输出端口输出低电平(手动测试用)。
- //第1个参数为1代表通道1
- //第2个参数为0,代表立即输出低电平
- //第3个参数预留,固定为1,无意义
- //第4个参数代表脉冲时间,这里因为是输出高电平,并非脉冲,所以无意义
- //第5个参数为预留,跟第4个参数相同即可
- //第6个参数为时间单位,0代表微秒,1代表毫秒(这里因为是输出高电平,所以参数6无意义)
- //第7个参数为预留,与第6个参数相同即可
- iRes = MC CmpPluse (1, 0, 1, 100, 100, 0, 0);
- //下面代码控制比较输出端口输出一个 200ms 的脉冲 (手动测试用)。
- //第1个参数为1代表通道1
- //第2个参数为0,代表立即输出低电平
- //第3个参数预留,固定为1,无意义
- //第4个参数代表脉冲时间,这里因为是输出高电平,并非脉冲,所以无意义

- //第5个参数为预留,跟第4个参数相同即可 //第6个参数为时间单位,0代表微秒,1代表毫秒 //第7个参数为预留,与第6个参数相同即可
- iRes = MC CmpPluse (1, 2, 1, 200, 200, 1, 1);

//下面代码控制比较输出端口1在相对轴3当前位置为10000、20000、30000、40000、50000 时分表输出一个持续时间为10ms的脉冲(自动流程用)。

int iRes = 0;

//定义一个长度为 5 的数组,存储待比较数据点,如果只有一个位置要比较,就把数组长度设为 1 long 1BufData[5] = {10000,20000,30000,40000,50000};

- //第1个参数为3代表使用轴3的编码器位置进行比较
- //第2个参数为2代表输出类型为脉冲(1代表反转电平,2代表脉冲)
- //第3个参数为0代表初始电平为低电平(1代表初始电平为高电平)
- //第4个参数为10代表脉冲持续时间为10微秒或者10毫秒(取决于最后一个参数)
- //第5个参数代表待比较数据点存放指针
- //第6个参数为5代表待比较数据长度为5个数据点
- //第7个参数固定为 NULL
- //第8个参数固定为0
- //第9个参数为0代表坐标点为相对坐标(1代表绝对坐标)
- //第10个参数为1代表时间单位为毫秒(0代表时间单位为微秒)
- iRes = MC CmpBufData(3, 2, 0, 10, &1BufData[0], 5, NULL, 0, 0, 1);

5.14、自动回零相关 API

API	说明
MC_HomeStart	启动轴回零
MC_HomeStop	停止轴回零
	注意,如果回零没有正常完成,必须调用该函数结束回零,否则轴不能运动
MC_HomeSetPrm	设置回零参数
MC_HomeSetPrmSingle	设置回零参数(非结构体方式,可以代替 MC_HomeSetPrm)
MC_HomeGetPrm	获取回零参数
MC_HomeGetPrmSingle	获取回零参数(非结构体方式,可以代替 MC_HomeGetPrm)
MC_HomeGetSts	获取回零状态

参数详细说明:		
<pre>int MC_HomeStart(s</pre>	thort iAxisNum)	
nAxisNum	需要回零的轴号,取值范围: [1,AXIS_MAX_COUNT]	
<pre>int MC_HomeStop(sh</pre>	ort iAxisNum)	
nAxisNum	需要停止回零的轴号,取值范围: [1,AXIS_MAX_COUNT]	
<pre>int MC_HomeSetPrm(</pre>	int MC_HomeSetPrm(short iAxisNum, TAxisHomePrm *pAxisHomePrm)	
nAxisNum	需要设置回零参数的轴号,取值范围: [1,AXIS_MAX_COUNT]	
pAxisHomePrm	isHomePrm //轴回零参数	
	typedef struct _AxisHomeParm{	
	short nHomeMode; //1:HOME 回原点 2:HOME 加 Index 回原点 3:Index 回零	
	short nHomeDir; //回零方向,1:正向回零,0:负向回零	
	long 10ffset; //回零偏移,回到零位后再走一个 0ffset 作为零位	
	double dHomeRapidVel; //回零快移速度,单位: Pluse/ms	
	double dHomeLocatVel;	
	double dHomeIndexVel; //回零寻找 INDEX 速度,单位: Pluse/ms	
	double dHomeAcc; //回零使用的加速度,单位 Pluse/ms/ms	
	}TAxisHomePrm;	
	ringle (short iAxisNum, short nHomeMode, short nHomeDir, long 10ffset, double dHomeRapidVel, double	
	le dHomeIndexVel, double dHomeAcc)	
nAxisNum	需要设置回零参数的轴号,取值范围: [1,AXIS_MAX_COUNT]	
nHomeMode	1:HOME 回原点, 此回零方式最常用	
	2:HOME 加 Index 回原点(仅支持带 Index 的驱动)	
nHomeDir	3:Index 回原点(仅支持带 Index 的驱动)	
10ffset	回零方向,1:正向回零,0:负向回零	
	回零偏移,回到零位后再走一个 Offset 作为零位,通常该参数为 0	
dHomeRapidVel dHomeLocatVel	回零快移速度,单位: Pluse/ms 回零定位速度,单位: Pluse/ms	
dHomeIndexVel	回零寻找 INDEX 速度,单位: Pluse/ms	
dHomeAcc		
	回零使用的加速度,单位 Pluse/ms/ms (short iAxisNum, TAxisHomePrm *pAxisHomePrm)	
nAxisNum		
	需要获取回零参数的轴号,取值范围: [1,AXIS_MAX_COUNT] //轴回零参数	
pAxisHomePrm		
	typedef struct _AxisHomeParm{	

```
short
                         nHomeMode: //1--HOME 回原点 2--HOME 加 Index 回原点
                         nHomeDir: //回零方向,1-正向回零,0-负向回零
                short
                                  //回零偏移,回到零位后再走一个 Offset 作为零位
                long
                         10ffset:
                         dHomeRapidVel:
                                        //回零快移速度,单位: Pluse/ms
                double
                                        //回零定位速度,单位: Pluse/ms
                double
                         dHomeLocatVel:
                                        //回零寻找 INDEX 速度,单位: Pluse/ms
                doub1e
                         dHomeIndexVel;
                                        //回零使用的加速度
                doub1e
                          dHomeAcc;
             } TAxisHomePrm;
int MC_HomeGetPrmSingle(short iAxisNum, short *nHomeMode, short *nHomeDir, long *10ffset, double*
dHomeRapidVel, double* dHomeLocatVel, double* dHomeIndexVel, double* dHomeAcc)
             需要获取回零参数的轴号,取值范围: [1,AXIS MAX COUNT]
nAxisNum
nHomeMode
             1--HOME 回原点 2--HOME 加 Index 回原点
             回零方向,1-正向回零,0-负向回零
nHomeDir
             回零偏移,回到零位后再走一个 Offset 作为零位
10ffset
             回零快移速度,单位:脉冲/毫秒
dHomeRapidVe1
dHomeLocatVe1
             回零定位速度,单位:脉冲/毫秒
dHomeIndexVel
             回零寻找 INDEX 速度,单位:脉冲/毫秒
             回零使用的加速度,单位:脉冲/毫秒/毫秒
dHomeAcc
int MC HomeGetSts(short iAxisNum, unsigned short* pStatus)
             需要获取回零状态的轴号,取值范围: [1,AXIS MAX COUNT]
nAxisNum
             pStatus: 指向回零状态的指针
pStatus
                      0: 尚未回零
                      1: 回零中
                      2: 回零成功
```

```
示例代码:
int iRes = 0:
short nStatus = 0:
TAxisHomePrm AxisHomePrm;
AxisHomePrm. nHomeMode = 1://回零模式为 HOME 回原点
AxisHomePrm. nHomeDir = 0://回零方向为负向回零
AxisHomePrm. dHomeRapidVel = 5://回零快移速度, 5脉冲/毫秒
AxisHomePrm. dHomeLocatVel = 1;//回零定位速度,1脉冲/毫秒
AxisHomePrm. dHomeAcc = 0.5;//回零使用的加速度, 0.5 脉冲/毫秒/毫秒
AxisHomePrm. 10ffset = 0;//回零偏移
//设置轴1回零参数
iRes = MC HomeSetPrm(1, &AxisHomePrm);
//启动轴1回零
iRes = MC HomeStart(1);
//获取轴1回零状态
iRes = MC HomeGetSts(1, &nStatus);
```

5.15、PT 模式相关 API

API	说明
MC_PrfPt	设置指定轴为 PT 模式
MC_PtSpace	读取指定轴的 PT 缓冲区空闲存储空间
MC_PtRemain	读取指定轴的 PT 存储空间尚未执行的数据长度
MC_PtData	向指定轴的 PT 缓冲区发送数据
MC_PtClear	清除指定轴 PT 缓冲区的数据
MC_PtStart	启动 PT 模式运动

参数详细说明:

多级 F细 况 明:	
<pre>int MC_PrfPt(short</pre>	nAxisNum, short mode=PT_MODE_STATIC)
nAxisNum	轴编号,1、2、3、4
mode	PT_MODE_STATIC 静态
	PT_MODE_DYNAMIC 动态
<pre>int MC_PtSpace(sho</pre>	rt nAxisNum, long *pSpace, short nCount)
nAxisNum	轴编号,1、2、3、4
pSpace	空闲存储空间的数据长度存放指针
nCount	一次获取的 PT 空间个数(1^2)
<pre>int MC_PtRemain(sh</pre>	ort nAxisNum, long *pRemainSpace, short nCount)
nAxisNum	轴编号,1、2、3、4
pRemainSpace	尚未执行的数据长度存放指针
nCount	一次获取的 PT 空间个数(1^2)
int MC_PtData(shor	t nAxisNum, short* pData, long lLength, double dDataID)
nAxisNum	轴编号,1、2、3、4
pData	数据存放指针
1Length	数据长度
nDataID	数据标识,每一包数据都应该和上一包不同,否则会被丢弃 1~4 循环。
<pre>int MC_PtClear(lon</pre>	g lAxisMask)
nAxisNum	轴掩码一个位代表一个轴,0X0001代表轴1,0X0007表轴1轴2和轴3
int MC_PtStart(long 1AxisMask)	
nAxisNum	轴掩码一个位代表一个轴,0X0001代表轴1,0X0007表轴1轴2和轴3
<i>→ I</i> zd / D Z d	

示例代码:

```
int iRes = 0; int iAxisNum = 1; int g_dDataID = 1;
//声明一个长度为 100 的数组
short nData[100];

//设置轴 1 为 PT 模式
iRes = MC_PrfPt(iAxisNum);

//压入 PT 数据
iRes = MC_PtData(iAxisNum, nData, 100, g_dDataID); g_dDataID++;

//启动 PT 运动
MC_PtStart(OXO001 << (iAxisNum-1));
```

5.16、手轮相关 API(支持手轮接口的型号可用)

API	说明
MC_GetDiRaw	获取手轮轴选和倍率 I0
MC_StartHandwheel	指定轴开始手轮模式
MC_EndHandwhee1	指定轴结束手轮模式

参数详细说明:

多级广油机约•			
<pre>int MC_GetDiRa</pre>	w(short nDiType, long	*pValue)	
nDiType		指定数字 I0 类型	
读取手轮 I0 时,	该参数固定为7	MC_LIMIT_POSITIVE(该宏定义为 0) 正限位	
		MC_LIMIT_NEGATIVE(该宏定义为 1) 负限位	
		MC_ALARM(该宏定义为 2) 驱动报警	
		MC_HOME(该宏定义为 3) 原点开关	
		MC_GPI(该宏定义为 4) 通用输入	
		MC_MPG(该宏定义为 7) 手轮 IO 输入	
pValue		10 输入值存放指针	
int MC_StartHandwh	int MC_StartHandwheel(short nAxisNum, short nMasterAxisNum, long lMasterEven, long lSlaveEven, short		
nIntervalTime, doub	le dAcc, double dDec, double	e dVel, short nStopWaitTime)	
nAxisNum	轴编号		
nMasterAxisNum	跟随轴号,通常为9		
1MasterEven	跟随比例系数,可以先	上设定为 1, 然后逐渐调整到合适比例。	
1SlaveEven	跟随比例系数,可以先	上设定为 1, 然后逐渐调整到合适比例。	
nIntervalTime	固定为0		
dAcc	固定为 0.1		
dDec	固定为 0.1		
dVel	固定为 50		
nStopWaitTime	固定为0		
int MC_EndHandwhee	1(short nAxisNum)		
nAxisNum	轴编号		

重点说明:

- 1、手轮接线图参见章节 3.2 硬件接口说明
- 2、手轮 X/Y/Z/A/B/X1/X10/X100 的 IO 读取参见"5.3、IO 操作 API"章节。使用 MC_GetDiRaw 函数读取。
- 3、X100通常不用接。默认 X1 和 X10 读不到的情况下就是 X100,这样可以节约 IO 端口。
- 4、X/Y/Z/A/B/X1/X10/X100 这些 IO 信号读取后,需要自行在代码里面处理哪些轴进入手轮模式以及比例。
- 5、假设 X 轴当前在手轮模式,程序检测到用户切换到 Y 轴了,那么 Y 轴进入手轮模式时, X 一定要退出手轮模式。
- 6、手轮倍率切换时,该轴必须先退出手轮模式才能修改倍率

5.17、串口/485 相关 API(可选项)

API	说明
MC_UartConfig	设置串口波特率、数据长度、校验和、停止位长度等通讯相关参数
MC_SendEthToUartString	通过以太网转串口发送数据
MC_ReadUartToEthString	读取串口转以太网数据

int MC_UartConfig(unsigned short nUartNum, unsigned long uLBaudRate, unsigned short nDataLength, unsigned short		
nVerifyType, unsigned short nStopBitLen)		
nUartNum	串口号(485的串口号为3)	
uLBaudRate	波特率	
nDataLength	数据长度,7或者8	
nVerifyType	校验类型,0 无校验,1 奇校验,2 偶校验	
nStopBitLen	停止位(该参数固定为0,0代表一个停止位)	
int MC_SendEthToUa	rtString(short nUartNum, unsigned char*pSendBuf, short nLength)	
nUartNum	串口号(485的串口号为3)	
pSendBuf	待发送数据存储指针	
nLength	收取到的数据长度,不会大于256,0代表未收到任何数据	
<pre>int MC_ReadUartToEthString(short nUartNum, unsigned char* pRecvBuf, short* pLength)</pre>		
nUartNum	串口号(485的串口号为3)	
pRecvBuf	待收取数据存储指针	
pLength	收取到的数据长度,不会大于256,0代表未收到任何数据	

5.18、坐标系跟随相关 API(仅高端款支持)

API	说明
MC_SetAddAxis	设置指定轴的累加运动轴。

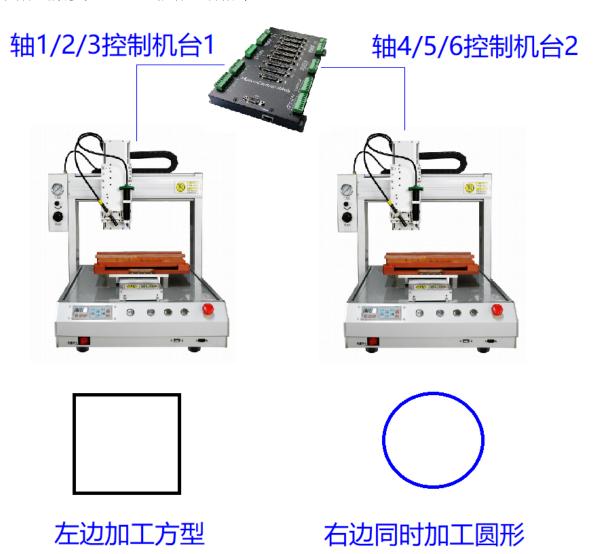
参数详细说明:

int MC_SetAddAxis(short nAxisNum, short nAddAxisNum)	
nAxisNum	轴号,1~AXIS_MAX_COUNT
nAddAxisNum	累加运动轴轴号,1 [~] (AXIS_MAX_COUNT)

坐标系跟随主要用于对运动中产品进行加工。

举例说明:

某产品在拉带上运动,需要对该产品进行加工,但在加工过程中,拉带不能停止。此时就需要用 到坐标系跟随功能,需要将拉带的运动补偿到坐标系相关轴当中。


5.19、双通道相关使用说明(仅高端款支持)

标准款控制卡只能建立一个坐标系。但双通道即允许客户建立2个坐标系,2个坐标系相互独立, 互不干涉。

带双通道功能的控制卡,可以实现两个坐标系同时加工,比如 1/2/3 轴组成 XYZ 结构, 4/5/6 轴 组成另外一个 XYZ 结构。1/2/3 轴加工一个正方形的同时, 4/5/6 轴可以同时画圆或者其他图形。

双通道函数和单通道函数是一模一样的,只是单通道坐标系号只能为1,双通道的坐标系号取值 范围是 1~2

具体函数参见"5.9、插补运动指令API"

5.20、寄存器操作类 API(选配功能,PMC 系列支持,用于梯形图交互)

API	说明
MC_SetPLCShortD	以 short 的格式获取 PLC 的 D 寄存器
MC_GetPLCShortD	以 short 的格式获取 PLC 的 D 寄存器
MC_SetPLCLongD	以 long 的格式设置 PLC 的 D 寄存器
MC_GetPLCLongD	以 long 的格式获取 PLC 的 D 寄存器
MC_SetPLCF1oatD	以 float 的格式设置 PLC 的 D 寄存器
MC_GetPLCF1oatD	以 float 的格式获取 PLC 的 D 寄存器
MC_SetPLCM	设置 PLC 的 M 值
MC_GetPLCM	获取 PLC 的 M 值

多数详细说明:	
<pre>int MC_SetPLCShortD(</pre>	(long 1Add, short *pData, short nCount)
1Add	D寄存器首地址
pData	要设置的D寄存器存放地址
nCount	一次性设置D寄存器的个数
<pre>int MC_GetPLCShortD(</pre>	(long 1Add, short *pData, short nCount)
1Add	D寄存器首地址
pData	读取到的D寄存器存放地址
nCount	一次性读取D寄存器的个数
<pre>int MC_SetPLCLongD(1</pre>	ong 1Add, long *pData, short nCount)
1Add	D寄存器首地址
pData	要设置的D寄存器存放地址
nCount	一次性设置D寄存器的个数
<pre>int MC_GetPLCLongD(1</pre>	ong 1Add, long *pData, short nCount)
1Add	D寄存器首地址
pData	读取到的D寄存器存放地址
nCount	一次性读取D寄存器的个数
<pre>int MC_SetPLCFloatD(</pre>	(long 1Add, float *pData, short nCount)
1Add	D寄存器首地址
pData	要设置的D寄存器存放地址
nCount	一次性设置D寄存器的个数
<pre>int MC_GetPLCFloatD(</pre>	(long 1Add, float *pData, short nCount)
1Add	D寄存器首地址
pData	读取到的D寄存器存放地址
nCount	一次性读取D寄存器的个数
<pre>int MC_SetPLCM(long</pre>	
1Add	M寄存器首地址
pData	要设置的M寄存器存放地址
nCount	一次性设置M寄存器的个数
int MC_GetPLCM(long	1Add, char *pData, short nCount)
1Add	M寄存器首地址
pData	读取到的M寄存器存放地址

nCount 一次性读取 M 寄存器的个数

5.21、机械臂操作类 API(选配功能,PMC 系列支持)

API	说明
MC_RobotSetPrm	设置机械手参数
MC_RobotSetPrmDelta40001	设置 Delta 机械手 40001 类型参数专用函数
MC_RobotSetForward	设置机械手进入关节运动
MC_RobotSetInverse	设置机械手进入坐标系运动

	Prm(unsigned short RobotID,unsignort *pJogAxisList,short nVirAxi	<pre>med long ulRobotType, short sCount, short* pVirAxisList, void</pre>	
*RobotParm)			
RobotID	机械手 ID, 通常为 1		
u1RobotType	机械手类型		
	40001 为标准 Delta 机械手		
	50008 为 XYZ+AC 双转台结构(也边	适用于 XYZ+单转台)	
	50011 为 XYZ+AC 双摆头结构(也说	适用于 XYZ+单摆头)	
nJogAxisCount	关节轴数量		
pJogAxisList	关节轴轴号列表		
nVirAxisCount	虚拟轴数量		
pVirAxisList	虚拟轴轴号列表		
RobotParm	机械手参数,类型不同,参数结构体不同		
	//Delta 参数		
	<pre>typedef struct _DeltaParm{</pre>		
	long lPlusePerCircle[3];//关节电机每圈脉冲数,单位脉冲 double dRotateAngle[3];//关节平面相对 XZ 平面的旋转角度,单位度 double dDisFixPlatform[3];//定平台中心点到连接点的长度,单位 mm double dLengthArm1[3];//活动关节 1 的臂长,单位 mm double dLengthArm2[3];//活动关节 2 的臂长,单位 mm double dDisMovPlatform[3];//动平台中心点到连接点的长度,单位 mm } DELTA_PARM;		
	//XYZAC 双摇篮参数 typedef struct _XYZAC_PRRA{ double dCX; double dCY; double dAY; double dAZ; long lPlusePerCircle[5]; double dPitch[5]; } XYZAC PARM;	//C 轴旋转中心 X 坐标,单位毫米 //C 轴旋转中心 Y 坐标,单位毫米 //A 轴旋转中心 Y 坐标,单位毫米 //A 轴旋转中心 Z 坐标,单位毫米 //各轴每圈脉冲数量 //各轴螺距,单位毫米	

//XYZTATC 双摆头参数

typedef struct XYZTATC PRRA{

double dDX: //C 在零度时, 旋转关节中心相对 Z 轴的距离 X, 单位毫米 double dDY; //C 在零度时, 旋转关节中心相对 Z 轴的距离 Y, 单位毫米

double dR; //末端旋转半径,单位毫米

//回零完成后,C轴角度,单位度,范围 $0^{\sim}360$ double dOrgAngleC;

long lPlusePerCircle[5]; //各轴每圈脉冲数量 //各轴螺距,单位毫米 double dPitch[5];

} XYZTATC_PARM;

int MC RobotSetPrmDelta40001(unsigned short RobotID, short nJogAxisCount, short JogAxis1, short JogAxis2, short JogAxis3, short nVirAxisCount, short VirAxisX, short VirAxisY, short VirAxisZ, long 1PlusePerCircle, double dRotateAngle1, double dRotateAngle2, double dRotateAngle3, double dDisFixPlatform, double dLengthArm1, double dLengthArm2, double dDisMovPlatform)

,	
RobotID	Robot ID: 机械手 ID, 通常为 1
nJogAxisCount	关节轴数量,固定为3
JogAxis1	关节轴1轴号,通常为1
JogAxis2	关节轴 2 轴号,通常为 2
JogAxis3	关节轴3轴号,通常为3
nVirAxisCount	虚拟坐标轴数量,固定为3
VirAxisX	虚拟坐标轴 X 轴号,通常为 11
VirAxisY	虚拟坐标轴 Y 轴号,通常为 12
VirAxisZ	虚拟坐标轴 Z 轴号,通常为 13
1PlusePerCircle	各轴每圈脉冲数量
dRotateAngle1	关节平面 1 相对 XZ 平面的旋转角度,单位度
dRotateAngle2	关节平面 2 相对 XZ 平面的旋转角度,单位度
dRotateAngle3	关节平面 3 相对 XZ 平面的旋转角度,单位度
dDisFixPlatform	定平台中心点到连接点的长度,单位 mm
dLengthArm1	活动关节1的臂长,单位 mm
dLengthArm2	活动关节 2 的臂长,单位 mm
dDisMovPlatform	动平台中心点到连接点的长度,单位 mm
<pre>int MC_RobotSetFo</pre>	orward(unsigned short nRobotID)
nRobotID	机械手 ID,通常为 1,调用该函数后,可以进行关节运动
<pre>int MC_RobotSetIn</pre>	nverse(unsigned short nRobotID)
nRobotID	机械手 ID,通常为 1,调用该函数后,可以进行坐标系 XYZ 运动

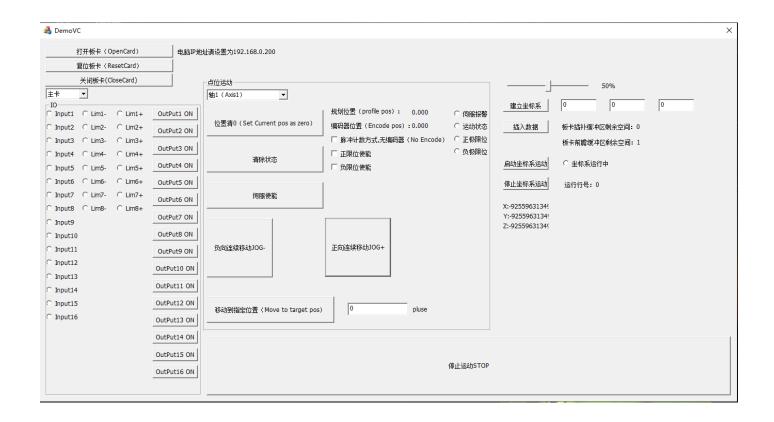
5.22、DXF 图形操作类 API

百度网盘分享的文件: dxf 文件读取解析例程

链接: https://pan.baidu.com/s/1XuTg-Ht584Zz38nI4hNgaw

提取码: 6666

API	说明
MC_DxfLoadFile	加载 dxf 图形
MC_DxfGetCircleCount	获取 dxf 图形中圆形总数量
MC_DxfGetMultiLineCount	获取 dxf 图形中多线段总数量
MC_DxfGetCircleCenterR	获取 dxf 图形中第 N 个圆的圆心 XYZ 坐标和半径 R
MC_DxfGetCircleAllCenterR	获取 dxf 图形中所有圆的圆心坐标和半径
MC_DxfGetMultiLineInfo	获取 dxf 图形中多线段相关信息
MC_DxfGetMultiLinePoint	获取 dxf 图形中第 N 个多线段点数
MC_DxfGetMultiLineAllPoint	获取 dxf 图形中第 N 个多线段所有点的 XYZ 坐标

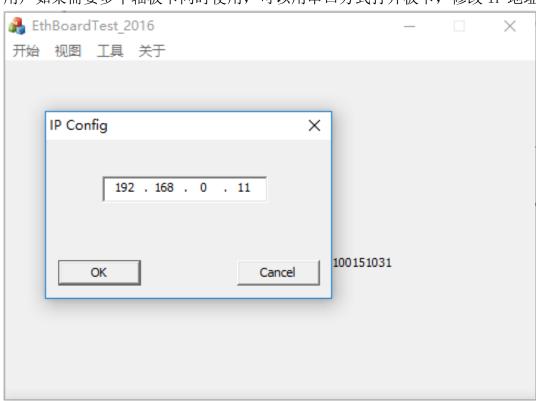

int MC_DxfLoadFi	le(char* pFile)	
PFile	Dxf 文件路径	
int MC_DxfGetCir	cleCount(short nLayerIndex,long* pCount)	
nLayerIndex	固定为0	
PCount		
int MC_DxfGetMul	tiLineCount(short nLayerIndex,long* pCount)	
nLayerIndex	固定为0	
PCount	多线段总个数	
int MC_DxfGetCir	cleCenterR(short nLayerIndex,long 1CricleIndex,double* dX,double*	
dY, double* dZ, do	uble* dR)	
nLayerIndex	固定为0	
1CricleIndex	圆弧索引,从0开始	
dX	圆心 X	
dY	圆心 Y	
dZ	圆心 Z	
dR	圆半径	
int MC_DxfGetCir	cleAllCenterR(short nLayerIndex,double* dX,double* dY,double*	
dZ, double* dR, lo	ng* pCount)	
nLayerIndex	固定为 0	
dX	圆心 X	
dY	圆心 Y	
dΖ	圆心 Z	
dR	圆半径	
pCount	圆总数量	
int MC_DxfGetMultiLineInfo(short nLayerIndex, long lMultiLineIndex, double* dSX, double*		
dSY, double* dEX, double* dEY, double* dEZ, long* pCount)		
nLayerIndex	固定为0	
lMultiLineIndex	多线段索引,从 0 开始	

博派科技	www.bopaitech.com
1 111 11111111111111111111111111111111	www.bobaitecii.com

博派科技 WWW	/.bopaitecn.com 告
dSX	起点X
dSY	起点Y
dSZ	起点Z
dEX	终点 X
dEY	终点 Y
dEZ	终点 Z
pCount	总点数
int MC_DxfGetMul	tiLinePoint(short nLayerIndex,long lMultiLineIndex,long
1PointIndex, doub	le* dX, double* dY, double* dZ, short* nArcFlag, short* nArcDir, double*
dCenterX, double*	dCenterY, double* dR)
nLayerIndex	固定为0
1MultiLineIndex	多线段索引,从0开始
1PointIndex	点索引,从0开始
dX	X坐标
dY	Y坐标
dZ	Z坐标
nArcFlag	0 端点, 1 弧点
nArcDir	0 顺时针, 1 逆时针(弧点时有效)
dCenterX	圆心坐标 X (弧点时有效)
dCenterY	圆心坐标 Y (弧点时有效)
dR	圆弧半径(弧点时有效)
int MC_DxfGetMul	tiLineAllPoint(short nLayerIndex,long lMultiLineIndex,double*
dX, double* dY, do	uble* dZ, short* nArcFlag, short* nArcDir, double* dCenterX, double*
dCenterY, double*	dR, long* pCount)
nLayerIndex	固定为0
lMultiLineIndex	多线段索引,从0开始
dX	X坐标
dY	Y坐标
47	7. 从标

nLayerIndex	固定为 0
1MultiLineIndex	多线段索引,从0开始
dX	X坐标
dY	Y坐标
dZ	Z坐标
nArcFlag	0 端点, 1 弧点
nArcDir	0顺时针,1逆时针(弧点时有效)
dCenterX	圆心坐标 X (弧点时有效)
dCenterY	圆心坐标 Y (弧点时有效)
dR	圆弧半径(弧点时有效)
pCount	总点数

六、测试软件


七、PC端 IP 配置及多轴板卡并联实现方法

通过多个板卡并联的方案,一台电脑可以控制 16 轴、32 轴、48 轴....1024 轴 电脑 IP 地址需设置为 192.168.0.200

板卡出厂默认 IP 地址为 192.168.0.1,通常情况下无需做修改。

打开板卡代码为: MC Open (0, "192.168.0.200");

用户如果需要多个轴板卡同时使用,可以用串口方式打开板卡,修改 IP 地址。如下图所示:

例如同时使用 3 个轴板卡, IP 地址分别为 192. 168. 0. 1、192. 168. 0. 2、192. 168. 0. 3,则打开板卡代码为:

```
int iRes = 0;

iRes += MC_SetCardNo(1);

iRes += MC_Open(0, "192.168.0.200");

iRes += MC_SetCardNo(2);

iRes += MC_Open(0, "192.168.0.200");

iRes += MC_SetCardNo(3);

iRes += MC_Open(0, "192.168.0.200");

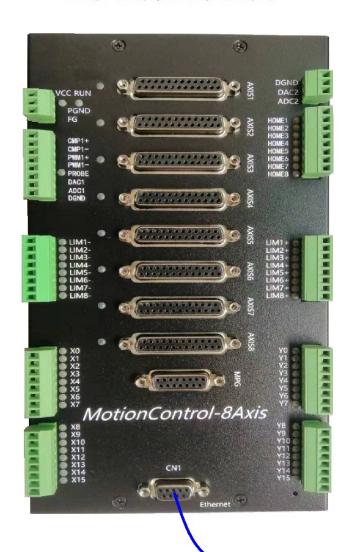
设置板卡 1 第 1 个 IO 输出,然后板卡 2 第 1 个 IO 输出,最后板卡 3 第 1 个 IO 输出代码为:

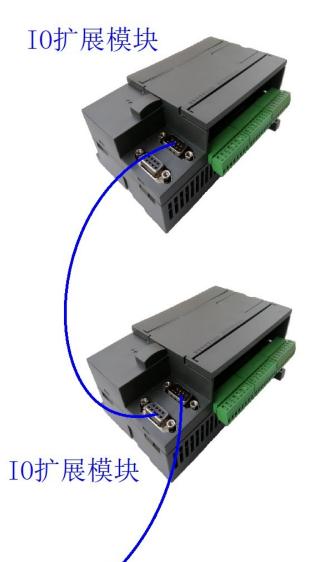
iRes += MC_SetCardNo(1);

iRes += MC_SetExtDoBit(0,0,1);

iRes += MC_SetExtDoBit(0,0,1);

iRes += MC_SetCardNo(3);

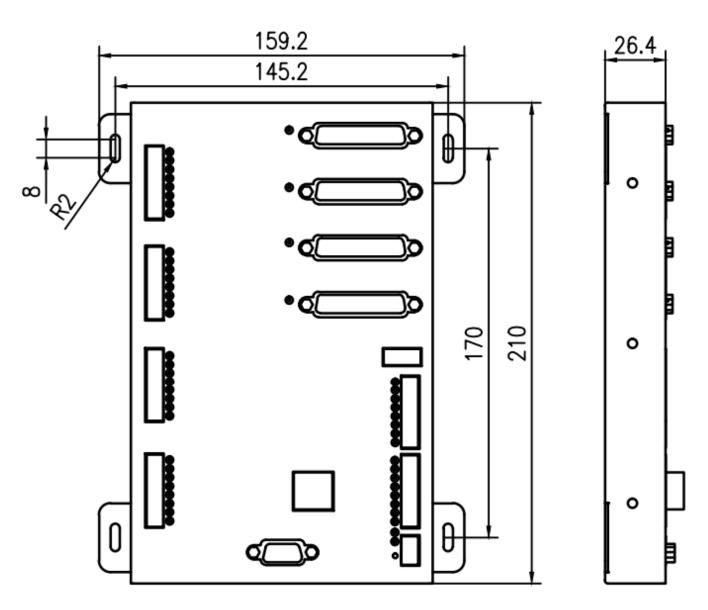

iRes += MC_SetExtDoBit(0,0,1);
```


重点说明:如果使用交换机,通常建议板卡 IP 从 192.168.0.2 开始。

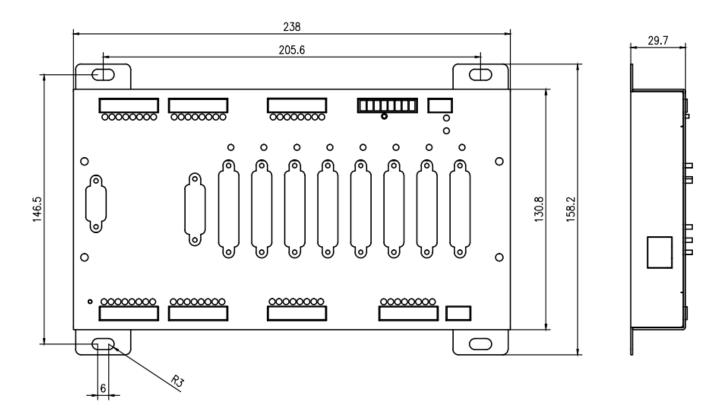
八、IO 扩展方法

如果运动控制卡自身 IO 不够用,可选购我司 IO 扩展卡配套使用,通过一根 DB9 延长线串联即可,扩展协议为我司自定义总线协议,性能稳定,延迟小,且不占用电脑端口。

IO扩展方法示意图



九、运动控制卡安装尺寸


1、四轴运动控制卡安装尺寸

2~4 轴钣金 3D 模型下载链接: https://pan.baidu.com/s/1y5RfYDzl-zvReilfnhOl3Q 提取码: 6666

2、6轴、8轴运动控制卡安装尺寸

6~8 轴钣金 3D 模型下载链接: https://pan.baidu.com/s/137gJo0f9v3l8JkP1S6fYFg 提取码: 6666

3、10 轴~16 轴运动控制卡安装尺寸

10~16 轴钣金 3D 模型下载链接: https://pan.baidu.com/s/1bEq2PB4o7e_i1rqpKZCfkw 提取码: 6666

十、附录 API 一览

板卡打开关闭 API		
MC_SetCardNo	切换当前运动控制器卡号	
MC_GetCardNo	读取当前运动控制器卡号	
MC_Open	打开板卡	
MC_Reset	复位板卡	
MC_Close	关闭板卡	
	板卡配置类 API	
MC_AlarmOn	设置轴驱动报警信号有效	
MC_AlarmOff	设置轴驱动报警信号无效	
MC_AlarmSns	设置运动控制器轴报警信号电平逻辑	
MC_LmtsOn	设置轴限位信号有效	
MC_LmtsOff	设置轴限位信号无效	
MC_LmtSns	设置运动控制器各轴限位触发电平	
MC_EncOn	设置为"外部编码器"计数方式	
MC_EncOff	设置为"脉冲计数器"计数方式	
MC_EncSns	设置编码器的计数方向	
MC_StepSns	设置脉冲输出通道的方向	
	IO 操作 API	
MC_GetDiRaw	读取数字 IO 输入状态的原始值	
MC_GetDiReverseCount	读取数字量输入信号的变化次数	
MC_SetDiReverseCount	设置数字量输入信号的变化次数的初值	
MC_SetExtDoValue	设置 IO 输出(包含主模块和扩展模块)	
MC_GetExtDiValue	获取 IO 输入(包含主模块和扩展模块)	
MC_GetExtDoValue	获取 IO 输出(包含主模块和扩展模块)	
MC_SetExtDoBit	设置指定 I0 模块的指定位输出(包含主模块和扩展模块)	
MC_GetExtDiBit	获取指定 I0 模块的指定位输入(包含主模块和扩展模块)	
MC_GetExtDoBit	获取指定 I0 模块的指定位输出(包含主模块和扩展模块)	
MC_SetDac	设置 DAC 输出电压	
MC_GetAdc	读取 ADC 输入电压	
MC_SetAdcFilter	设置模拟量输入滤波时间	
MC_SetAdcBias	设置模拟量输入通道的零漂电压补偿值	
MC_GetAdcBias	读取模拟量输入通道的零漂电压补偿值	
MC_SetPwm	设置 PWM 输出频率以及占空比	
MC_SetDoBitReverse	设置数字 IO 输出指定时间的单个脉冲	
ーニー		
MC_PrfTrap	设置指定轴为点位模式	
MC_SetTrapPrm	设置点位模式运动参数	
MC_SetTrapPrmSingle	设置点位模式运动参数(可替代 MC_SetTrapPrm)	
MC_GetTrapPrm	读取点位模式运动参数	
MC_GetTrapPrmSingle	读取点位模式运动参数(可替代 MC_GetTrapPrm)	

博派科技 WWW.I	oopaitech.com	<u> 告則电话/微信 131131868/1</u>
MC_SetPos	设置目标位置	
MC_SetVel	设置目标速度	
MC_Update	启动点位运动	
	轴 JOG 运动 API	
MC_PrfJog	设置指定轴为 JOG 模式(速度模式)	
MC_SetJogPrm	设置 JOG 模式运动参数	
MC_SetJogPrmSingle	设置 JOG 模式运动参数(可替代 MC_Set JogPrm)	
MC_GetJogPrm	读取 JOG 模式运动参数	
MC_GetJogPrmSingle	读取 JOG 模式运动参数(可替代 MC_Get JogPrm)	
MC_SetVel	设置目标速度	
MC_Update	启动 JOG 运动	
	运动状态检测类 API	
MC_AxisOn	打开驱动器使能	
MC_AxisOff	关闭驱动器使能	
MC_Stop	停止一个或多个轴的规划运动,停止坐标系运动	
MC_GetSts	读取轴状态	
MC_ClrSts	清除驱动器报警标志、跟随误差越限标志、限位触发标志	
MC_GetPrfPos	读取规划位置	
MC_GetAxisEncPos	读取编码器位值	
MC_GetPrfVel	读取规划速度	
MC_GetAllSysStatusSX	获取所有板卡相关状态	
	安全机制 API	
MC_SetSoftLimit	设置软限位	
MC_GetSoftLimit	获取软限位	
MC_LmtsOn	设置轴限位信号有效	
MC_LmtsOff	设置轴限位信号无效	
MC_LmtSns	设置运动控制器各轴限位触发电平	
MC_EStopSetIO	设置系统紧急停止 I0	
MC_EStopOnOff	开启/关闭紧急停止功能	
MC_EStopGetSts	获取紧急停止触发状态	
MC_EStopClrSts	清除紧急停止触发状态	
MC_SetHardLimP	设置正硬限位映射 IO (10 轴以上用)	
MC_SetHardLimN	设置负硬限位映射 IO(10 轴以上用)	
	其他 API	
MC_ZeroPos	清零轴的规划和编码器位置	
MC_GetID	获取板卡唯一标识 ID	
MC_SetAxisBand	设置轴到位误差带	
MC_SetBacklash	设置反向间隙补偿的相关参数	
MC_GetBacklash	读取反向间隙补偿的相关参数	
MC_SetStopDec	设置平滑停止减速度和急停减速度	
MC_WriteInterFlash	写板卡内部 Flash	
MC_ReadInterFlash	读板卡内部 Flash	
MC_DownPitchErrorTable	下载螺距误差补偿表	
MC_ReadPitchErrorTable	读取螺距误差补偿表	

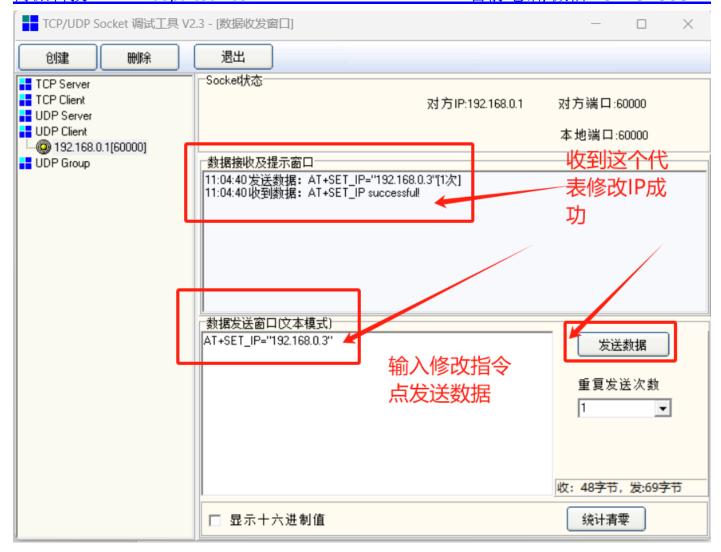
博派科技 www.bopaitech.com

MC_AxisErrPitchOn	打开指定螺距误差补偿	
MC_AxisErrPitchOff	关闭指定螺距误差补偿	
	插补运动指令 API	
MC_SetCrdPrm	设置坐标系参数,确立坐标系映射,建立坐标系	
MC_GetCrdPrm	查询坐标系参数	
MC_InitLookAhead	配置指定坐标系指定 FifoIndex 前瞻缓冲区的拐弯速率,最大加速度,缓冲区深度,缓冲区指针等参数	
MC_InitLookAheadSingle	用于替代 MC_InitLookAhead 函数,方便不擅长结构体的客户使用。	
MC_CrdClear	清除插补缓存区内的插补数据	
MC_LnXY	缓存区指令,两维直线插补	
MC_LnXYZ	缓存区指令,三维直线插补	
MC_LnXYZA	缓存区指令,四维直线插补	
MC_LnXYZAB	缓存区指令,五维直线插补	
MC_LnXYZABC	缓存区指令,六维直线插补	
MC_LnA11	缓存区指令,7~14 维直线插补	
MC_ArcXYC	缓存区指令,XY 平面圆弧插补(以终点坐标和圆心位置为输入参数)	
MC_ArcXZC	缓存区指令,XZ 平面圆弧插补(以终点坐标和圆心位置为输入参数)	
MC_ArcYZC	缓存区指令,YZ 平面圆弧插补(以终点坐标和圆心位置为输入参数)	
MC_HelixXYCZ	缓存区指令,XY 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_HelixXZCY	缓存区指令,XZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_HelixYZCX	缓存区指令,YZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_HelixXYCCount	缓存区指令,XY 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_HelixXZCCount	缓存区指令,XZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_HelixYZCCount	缓存区指令,YZ 平面螺旋线插补(以终点坐标和圆心位置为输入参数)	
MC_BufPWM	缓存区指令,设置 PWM 频率及占空比	
MC_BufIO	缓存区指令,设置 IO 输出	
MC_BufIOReverse	缓存区指令,设置 IO 输出一个指定时间的脉冲	
MC_BufDelay	缓存区指令,延时一段时间	
MC_BufMoveVel	在插补运动的过程中插入 BufferMove 轴的速度设定	
MC_BufMoveAcc	在插补运动的过程中插入 BufferMove 轴的加速度设定	
MC_BufMove	在插补运动的过程中插入阻塞和非阻塞的点位运动	
MC_BufGear	设定了脉冲输出的个数。它会保证与其后紧挨的指令同时启动,同时停止	
MC_CrdData	向插补缓存区增加插补数据	
MC_CrdStart	启动插补运动	
MC_SetOverride	设置插补运动目标合成速度倍率	
MC_GetCrdPos	查询该坐标系的当前坐标位置值	
MC_CrdSpace	读取插补缓存区中的剩余空间	
MC_CrdStatus	查询插补运动坐标系状态	
MC_SetUserSegNum	缓存区指令,设置自定义插补段段号	
MC_GetUserSegNum	读取自定义插补段段号	
MC_GetRemainderSegNum	读取未完成的插补段段数	
MC_GetLookAheadSpace	获取前瞻缓冲区剩余空间	
MC_GetLookAheadSegCount	获取前瞻缓存区剩余段数	
MC_GetCrdVel	查询该坐标系的当前合成速度值	
	硬件捕获类 API	

售前电话/微信 13113186871

 计 机件技 WWW.		//
MC_SetCaptureMode	设置编码器捕获方式,并启动捕获	
MC_GetCaptureMode	读取编码器捕获方式	
MC_GetCaptureStatus	读取编码器捕获状态	
MC_SetCaptureSense	设置捕获电平	
MC_GetCaptureSense	获取捕获电平	
MC_ClearCaptureStatus	清除捕获状态	
	Gear/电子齿轮/电子凸轮类 API	
MC_PrfGear	设置指定轴进入电子齿轮模式	
MC_SetGearMaster	设置电子齿轮运动跟随主轴	
MC_GetGearMaster	读取电子齿轮运动跟随主轴	
MC_SetGearRatio	设置电子齿轮比	
MC_GetGearRatio	获取电子齿轮比	
MC_GearStart	启动电子齿轮运动	
MC_GearStop	停止电子齿轮运动	
MC_SetGearEvent	设置电子齿轮触发事件	
MC_GetGearEvent	获取电子齿轮触发事件	
	比较输出类 API	
MC_CmpPluse	设置比较器输出 I0 立即输出指定电平或者脉冲	
MC_CmpBufSetChannel	设置比较缓冲区对应输出通道	
MC_CmpBufData	向比较器缓冲区发送比较数据	
MC_CmpBufSts	获取比较器缓冲区状态	
MC_CmpBufStop	停止比较器缓冲区	
MC_CmpRpt	设置比较器缓冲区等比输出	
${\tt MC_CmpSetTriggerCount}$	设置比较器缓冲区触发计数初值	
${\tt MC_CmpGetTriggerCount}$	获取比较器缓冲区触发计数初值	
	PT 模式 API	
MC_PrfPt	设置指定轴为 PT 模式	
MC_PtSpace	读取指定轴的 PT 缓冲区空闲存储空间	
MC_PtRemain	读取指定轴的 PT 存储空间尚未执行的数据长度	
MC_PtData	向指定轴的 PT 缓冲区发送数据	
MC_PtClear	清除指定轴 PT 缓冲区的数据	
MC_PtStart	启动 PT 模式运动	
	手轮相关 API (支持手轮接口型号可用)	
MC_StartHandwheel	设置指定轴进入手轮模式	
$MC_EndHandwheel$	设置指定轴退出手轮模式	

十一、常见问题解答


11.1、如何修改 IP 地址?

链接: https://pan.baidu.com/s/1f1gupFRGjVr8E4dL0PrsZg

提取码: pr6c

下载上面修改 IP 地址的小工具即可修改 IP 地址。

11.2、IP 地址忘记了怎么办?

上电状态下,长按面板上的复位按键就可以恢复出厂IP,出厂IP地址为192.168.0.1。

11.3、急停信号接哪里?

通用输入都可以映射为轴的急停输入,设置函数为 MC_EStopSetIO 关于这个函数的使用细节,参见章节 5.7 "安全机制 API"

11.4、为什么碰到硬限位轴运动也不停止?

通常都是因为没有使能硬限位,使能函数为 MC LmtsOn 这个函数,具体参见章节 5.7 "安全机制 API"

11.5、调用 MC_Stop 函数停止加速度不够快,怎么调整?

MC SetStopDec 函数可以修改缓停和急停的加速度,具体参见章节 5.7"其他指令 API"

11.6、点位运动如何判断电机到位?

判断电机到位,主要用 MC_GetSts 函数和 MC_GetPrfPos 函数,前者用于读取轴状态,后者用于读取轴当前脉冲位置。当轴状态里面的 AXIS_STATUS_RUNNING 位变为 0,同时规划脉冲位置与目标位置差值小于 1 时,认为电机到位。

11.7、日志开启方法

在 MC_Open 函数前面,调用 MC_StartDebugLog(1),可以开启日志程序运行后,日志在 RunTimeLog 文件夹